
The 6809
Part 1: Design Philosophy

Terry Ritter
Joel Boney
Motorola, Inc.
3501 Ed Bluestein Blvd.
Austin, TX 78721

This is a story. It is a story of computers in
general, specifically microcomputers, and of one
particular microprocessor - with revolutionary social
change lurking in the background. The story could
well be imaginary, but it happens to be true. In this
3 part series we will describer the design of what we
feel is the best 8 bit machine so far made by human:
the Motorola M6809.

Philosophy

A new day is breaking; after a long slow
twilight of design the sun is beginning to rise on
the microprocessor revolution. For the first time we
have mass production computers; expensive custom,
cottage industry designs take on less importance.

Microprocessors are real computers. The
first and second generation devices are not very
sophisticated as processors go, but the are general
purpose logic machines. Any microprocessor can
eventually be made to solve the same problems as any
large scale computer, although this may be an easier
or harder task depending on the microprocessor.
(Naturally, some jobs require doing processing fast, in
real time. We are not discussing those right now. We
are discussing getting a big job done sometime.) What
differentiates the classes is a hierarchy of technology,
size performance, and curiously, philosophy of use.

A processor of given capability has a fixed
general complexity in terms of digital logic elements.
Consider the computers that were built using the first
solid state technology. In short they consisted of many
thousands of individual transistors and other parts
on hundreds of different printed circuit boards using
thousands of connections and miles of connecting
wire. A big computer was a big project and a very big
expense. This simple economic fact fossilized a whole
generation of technology into the “big computer
philosophy.”

Because the big computer was so expensive,
time on the computer was regarded as a limited and
therefore valuable resource. Certainly the time was
valuable to researchers who could now look more
deeply into their equations than ever before. Computer
time was valuable to business people who became at
least marginally capable of analyzing the performance
of an unwieldy bureaucratic organization. And the

computer makers clearly thought that processor time
was valuable too; or was a severely limited resource,
worth as much as the market would bear.

Processor time was a limited resource. But
some of us, a few small groups of technologists, are
about to change that situation. And we hope we will
also change how people look at computers, and how
professionals see them too. Computer time should be
cheap; people time is 70 years and counting down.

The large computer, being a very expensive
resource, quickly justified the capital required to
investigate optimum use of that resource. Among the
principal results of these projects was the development
of batch mode multiprocessing. The computer itself
would save up the various tasks it had to do, then
change from one to the other at computer speeds. This
minimized the wasted time between jobs and spawned
the concept of an operating system.

People were in the position of waiting for the
computer, not because they were less important than
the machine, but precisely because it was a limited

Photo 1: Systems architects Ritter (right) and Boney review some of the
6809 design documents. This work results in a complete description of
the desired part in a 200 page design specification. The specification is
then used by logic designers to develop flowcharts of internal operations
on a cycle by cycle basis.

resource (the problems it solved were not).
Electronics know-how continued to develop,

producing second generation solid state technology:
families of digital logic integrated circuits replaces
discrete transistors designs. This new technology was
exploited in two main thrusts: big computers could
be made conceptually bigger (or faster, or better)
for the same expense, or computers could be made
physically smaller and less expensive. These new,
smaller computers (minicomputers) filled market
segments which could afford a sizable but not huge
investment in both equipment and expertise. But
most people, including scientists and engineers, still
used only the very large central machines. Rarely
were minicomputers placed in schools; few computer
science or electrical engineering departments (who
might have been at the leading edge of new generation
technology) used them for general instruction.

And so the semiconductor technologists began

a third generation technology: the ability to build a
complete computer on a single chip of silicon. The
question then became, “How do we use this new
technology (to make money)?”

The semiconductor producer’s problem with
third generation technology was that an unbelievably
large development expense was (and is) required to
produce just one large scale integration (LSI) chip. The
best road to profit was unclear; for a while, customer
interconnection of gate array integrated circuits was
tried, then dropped. Complete custom designs were
(and are) found to be profitable only in vary large
volumes.

Another road to profit was to produce a few
programmable large scale integration devices which
could satisfy the market needs (in terms of large
quantities of different systems) and the factory’s needs
(in terms of volume production of exactly the dame
device). Naturally, the general-purpose computer was
seen as a possible answer.

So what was the market for a general-purpose
computer? The first thought was to enter the old
second generation markets; ie.: replacement of the
complex logic of small or medium scale integration.
Control systems, instruments and special designs
could all use a similar processor, but this designer
was the key. Designers (or design managers)had to be
converted from their heavy first and second generation
logic design backgrounds to the new third generation
technology. In so doing, some early marketing
strategists overlooked the principal microprocessor
markets.

Photo 2: 6809 logic design. Design engineer Wayne Harrington inspects a portion of the 6809’s processor logic blueprint at the
Motorola Austin plant. The print is colored by systems engineers to partition the logic for the logic-equivalent TTL “breadboard.”

About the Authors
Joel Boney and Terry Ritter are with the Motorola 6800
Microprocessor Design Group in Austin TX. Joel is responsible for
the software inputs into the design of the 6800 family processors and
peripheral parts and was a co-architect of the M6809. Terry Ritter is
a micro- component architect, responsible for the specification of the
6809 advanced microprocessor. While with Motorola, Terry has been
co- Architect of the 6809, and co-architect as well of the 6847 and
68047 video display generator integrated circuits. He holds a BSES
from the University of Texas as Austin and Joel Boney has a BSE
from the University of South Florida.

Random logic replacement was by no means a
quick and sufficient market for microprocessors. In
particular, the design cycle was quite long, users we
often unsophisticated in their use of computers, and
the unit volumes was somewhat small. Only when
microprocessors entered high volume markets (hobby,
games, etc) did the manufactures begin to make
money and thus provide a credible reason (and funds)
for designing future microprocessors. Naturally, the
users who wanted more features were surprised that it
was taking so long to get new designs they knew what
was needed.

Thus semiconductor makers began to realize that
their market was more oriented to hobby applications
that to logic replacement, and was more generalized
than they had thought. But even the hobby market was
saturable.

Meanwhile companies continued to improve
production and reduce costs, and competition drove
process down into the ground. Where could they sell
enough computers for real volume production, the
wondered. One answer was the personal computer!

Design of Large Scale Integration Parts

The design of a complex large scale integration
(LSI) part may be conveniently broken into thee
phases: the architectural design, the logic and
the layout software and hardware (breadboard)
simulations. Each phase ha its own requirements.

The architect/systems designers represent the
use of the device, the need of the marketplace and the
future needs of all customers. They propose what a
specific customer should have that could also be used
by other customers, possible in different ways. They
advocate what the customers will really want, even
when if no customers can be identified who know that
they will want it. that it is possible or that they will
want it. The attitude that “I know what is best for you”
and be irritating to most people, but it is necessary in
order to make maximum use of a limited resource (in
this case, a single LSI design). The architect eventually
generates the design specification used in subsequent
phases of the design.

Logic design consists of the production of a
cycle by cycle flowchart and the derivation of the
equations and logic circuitry necessary to implement
the specified design. This is a job of immense
complexity and detail, but it is absolutely crucial to the
entire project. Throughout this phase, the specification
may be iterated toward a local optimum of maximum
features at minimum logic (and thus cost). The
architectural design continues, and techniques are
developed to crosscheck on the logical correctness of
the architecture.

The third phase is the most hectic in terms of

demands and involvement. By this time, many people
know what the product is and see the resulting part
merely as the turning of an implementation “crank.” It
seems to those who are not involved in this phase that
more effort could case that crank to turn faster. Since
the product could be sold immediately, delay is seen
as a real loss of income. In actual practice, more effort
will sometimes “break the crank.”

A medium scale integration logic implementation
(usually transistor-transistor logic, for speed) is
required to verify the logic design. A processor
emulation may require ten different boards of 80
medium scale integrated circuits each and hundreds
of board to board interconnections. Each board will
likely require separate testing, and only then will the
emulation represent the processor to come. Extensive
test programs are required to check out each facet of
the part, each instruction, and each addressing mode.
This testing may detect logic design errors that will
have to be fixed at all levels of design.

Circuit design, in the context of the semiconductor
industry, depends upon running computer simulation
(which require sophisticated device models) of signals
at various nodes to verify that they will meet the
necessary speed requirement. Transistors are sized
and polysilicon lines changed to provide reliable
worst case operation.

Layout is the actual task of arranging transistors
and interconnections to implement the logic diagram.
Circuit design results will indicate appropriate
transistor sizes and polysilicon widths; these must
now be arranged for minimum area. Every attempt

Photo 3: 6809 emulator board. Software and systems engineers implement
a functional equivalent of the 6809 as a 6800 program. A 6800 to 6809
cross assembler allows 6809 programs to be assembled and then executed
as a check of the architectural design.

The other major device
needed for home
computers – the video
display generator color TV
interface – is presently in
volume production. Several
versions are available, many
derived from the original
Motorola architecture

is made to make general logic “cells” which can be
used in many places across the integrated circuit, but
minimization is the principal concern.

The layout for the chip eventually exists only
as a computer data base. Each cell is individually
digitized into the computer, where is can be arbitrarily
positioned, modified or replicated as desired. Large
2 by 3 m (6.5 by 10 feet) plots of various areas of
the chip are hand checked to the logic diagram by
layout and circuit designers as final checks of the
implemented circuit.

When layout is complete, the computer data
base that represents the chip design is sent to the mask
shop (the mask is a photographic stencil of the part
used in the manufacturing process). At the mask shop
precision plotting and photographic step and repeat
techniques are used to produce glass plates for each
mask layer. Each mask covers an entire wafer with
etched nickel or chrome layouts at real chip size. (A
typical LSI device will be between 5 by5 and 7.6
by 7.4mm (0.2 by 0.2 and 0.3 by 0.3 inches). These
masks are used to expose photosensitive etch resist the
will protect some areas of the wafer from the chemical
processes which selectively add the impurities that
create transistors.

Actual processing steps are quite similar for
each part. But the processing itself is a variable, and
it will not be known until final testing exactly how

many parts will turn out
to be saleable. Therefore,
a best estimate is taken,
and the required numbers
of wafers (of a particular
device) is started and

processed. The whole industry revolves around highly
trained production engineers, chemists and others who
process wafers to highly secret recipes. Some recipes
work, some don’t. You find out which ones do by
testing.

Each die (ie.: individual large scale integration
circuit) is tested while still on the wafer; failing devices
are marked with a blob of ink. The wafer is sawed
into individual dies and the good devices placed into a
plastic or ceramic package base. The connection pads
are “die bonded” to the exposed internal lead frame
with very tiny wire. The package is then sealed and
tested again.

Testing a device having only 40 pins but which
has up to 40,000 internal transistors is no mean
trick nor a minor expense. Furthermore, the device
must execute all operations properly at the worst
case system conditions (which may be high or low
extremes of temperature, voltage and loading) and
work with other devices on a common bus. Thus, the
device is not specified to its own maximum operating
speed, but rather the speed of a worst case system.
Motorola microprocessors can usually be made to run
much faster (and much slower) than their guaranteed
worst case specifications.

Project Goals

The 6809 project started life with a number of
(mostly unformalized) goals. The principle public
goal was to upgrade the 6800 processor to be definitely
superior to the 8 bit competition. (The Motorola
68000 project will address the 16 bit market with what
we believe will be another superior processor.) Many

Photo 4: Circuit design. Detailed computer
simulations of the circuit under design yield
predictions of on chip waveforms. Tulley
Peters and Bryant Wilder decide to enhance
a particular critical transistor.

people, including many customers, felt that all that
had to be done was to add another index register (Y),
a few supporting instructions (LDY, STY) and correct
some of the past omissions (PSHX, PULX, PSHU,m
PULY). Since this would mean a rather complete
redesign anyway, it made little sense to stop there.

A more philosophical goal — thus one much less
useful in discussions with engineers and managers
(who had their own opinions of what the project
should be) — was to minimize software cost. This led
to an extensive, and thus hard to explain sequence of
logic that went somewhat like this:

Q: How do we reduce software costs?
A: 1. Write code is a block structured high level

language.
2. Distribute the code in mass production read

only memories.
Q: Why aren’t many read only memories being

used now?
A: 1. The great opportunities for error in

assemble language allow many mistakes which incur
sever read only memory costs.

 2. The present architecture is not suitable for
read only memories.

Q: In what way are the second generation
processors unsuitable?

A: It is very difficult to use a read only memory
in any other context than that for which it was
originally developed. It is hard to use the same read
only memory on systems built by different vendors.
Simply having different input and output (IO) or using
a different memory location is usually enough to make
the read only product useless.

Q: What is needed?
A: 1. Position independent code.

 2. Temporary variables on the stack.
 3. Indirect operations through the stack for

input and output.
 4. Absolute indirect operation for system

branch tables.
And so it went. How could we make a device

that would answer the software problems of two
generations of processors? How indeed!

Design Decisions

Usually an engineering project may be pursued
in many ways, but only one way at a time. The ever
present hope is that this one time will be the only time
necessary. Furthermore, it would be nice to get the
project over with as soon as possible to get on with
selling some products. (A rapid return on investment
is especially important in a time of rapid inflation.)
To these honorable ends certain decisions are made

which delineate the investment and risk undertaken in
an attempt to achieve a new product.

The 6809 project was no exception. To minimize
project risk it was decided that the 6809 would be
built on the same technological base as the recently
completed 6800 depletion load redesign. In particular,
the machine would be a random logic computer with
essentially dynamic internal operation. It would use
the reliable 6800 type of storage register. Functions
would be compatible with the defined 6800 bus and
6800 peripherals. This decision would extend the
like of parts already in production and minimize
testing peripheral devices for a particular processor
(6800 versus 6809). Buss compatibility doesn’t
have to mean identity — the new device could have
considerably improved specifications but could not do
worse than the specifications for the existing device.
This mandate was a little tricky when you consider
that we were dealing with a more complex device
using exactly the same technology, but there was a
slight edge: the advancing very large scale integration
(VLSI) learning curve.

One wide range decision was that the new device
would be an improved 6800 part. The widely known
6800 architecture would be iterated and improved, but
no radical departure would be considered. In fact, the
new devise should be code compatible with the 6800
at some level.

Compatibility was the basis for the 6809
architecture design. It implied that the 6809 could
capitalize on the existing familiarity with the 6800.

Photo 5: Checking the flowcharts. Logic and circuit designer Bryant Wilder
compares the specification to one of the flowcharts. The flowcharts are
used to develop Boolean equations for the required logic; those equations
are then used to generate a logic diagram.

6800 programmers could be programming for the
6809 almost immediately and could learn and use new
addressing mode and features as they were needed.
This decision also ended any consideration of radically
new architecture for the machine before it was begun.

A corporation selling into a given market is
necessarily limited to moderate innovation. Any
vast product change requires reeducation of both the
internal marketing organization and the customer
base before mass sales can proceed. Consequently,
designers have to restrict their creativity to conform
to the market desires. The amount of change actually
implemented, produced and seen by society is the
true meaning of a computer “generation.” In the end,
society itself defines the limits of a new generation,
and a design years ahead of its time may well fail in
the marketplace.

M6800 Data Analysis

Once the initial philosophical and marketing

trade-offs were made, construction of the final form
of the M6809 began. By this time a large numbers of
M6800 programs had been written by both Motorola
and our customers, so it was felt that a good place to
start design of the 6809 was to analyze large amounts
of existing 6800 source code. Surprisingly, the
data gathered about 6800 usage of instructions and
addressing modes agreed substantially with similar
data previously compiled for minicomputers and maxi
computers. By far the most common instructions were
load and stores, which accounted for over 38 percent
of all 6800 instructions. Next were the subroutine
calls (Direct, Extended, Immediate, Indexed, Relative,
Accumulator) had nearly equal usage, which indicated
that programmers actually took advantage of the
bytes to be saved by direct (page zero) addressing
and indexed addressing. Furthermore the offsets for
indexed instructions were either 0 or less than 32 (see
table 2).

This information was used to greatly expand
the addressing modes (as discussed later) with out
making the 6800 programs require more code when
converted to run on the 6809. Also the number of
increment or decrement index register instructions
in loops indicated that auto incrementing and auto
decrementing would be beneficial.

Auto decrementing and auto incrementing are
similar to indexing except the index register used
is decremented before, or decremented after, the
addressing operation takes place.

As all programmers and even architects like
ourselves eventually learn, consistent and uniform
instruction sets are used more effectively than
instruction sets that treat similar resource (IO, registers
or data) in dissimilar ways. For example, the least used
instructions on the 6800 were those that dealt with the
A accumulator in specific ways that did not apply to the
B accumulator (eg.: ABA: add B to A, CBA: compare
B to A). It’s not that these instructions are not useful,
it’s just that programmers will not use inconsistent
instructions or addressing modes. Consistency became
the battle cry of the M6809 designers!

Customer Inputs

At the completion of the 6800 analysis stage,
the first preliminary design specification for the 6809
was generated. This preliminary specification was
then taken to about 30 customers who represented a
cross section of current 6800 users, as well as some
customers and consultants known to be hostile to the
6800. With these customers visits we hoped to resolve
two major questions about the 6809’s architecture:

1) Which architecture was more desirable 8 bit
or 16 bit?

Instruction Class Percent Usage
Loads 23.4
Stores 15.3
Subroutine calls and returns 13.0
Conditional branches 11.0
Unconditional branches and jumps 6.5
Compares and tests 6.2
Increments and decrements 6.1
Clear 4.4
Adds and subtracts 2.8
All others 11.3

Table 1: 6800 instruction types based on static analysis of 25,000
lines of 6800 source code. In static analysis the actual number of
occurrences of each instruction is tallied from program listings. In
the alternate technique, called dynamic analysis, the numbers of
occurrences of an instruction is tallied while the program is running.
An instruction inside a program loop would therefore be counted
more than once.

Index Offset Percent Usage
0 40.0

1–31 53.0
32–63 1.0

64-255 6.0

Table 2: Size of offsets used in 6800 indexed addressing, based on
static analysis of 25,000 lines of 6800 source code.

2) Did 6809 compatibility with the 6800 need to
occur at the object level or at the source level.

Most customers felt that an 8 bit architecture was
adequate for their upcoming applications, and they did
not want to pay the price penalty for 16 bit as long as
the 6809 included the most common 16 bit operations
such as add, subtract, load, store, compare and
multiply. Many were interested though, in Motorola’s
advanced 16 bit processor (68000) for future 16 bit
applications. From the very inception of the6809
project it was a requirement that the 6809 would be
compatible with the 6800. Weather this compatibility
needed to occur at the object level or at the assembly
language (source code) level was a question we felt
our customers should help us answer. Virtually every
customer indicated that source compatibility was
sufficient because they would not try to use 6800
read only memories in 6809 systems. Most customers
indicated that they would take advantage of the 6800
compatibility in order to initially convert running
6800 programs into running 6809 programs, and then
modify the 6800 code to take advantage of the 6809’s
features.

The decision not to be object code compatible
was an easy one for us since it meant that we could
remap the 6800 op codes in a manner guaranteed to
produce more byte efficient and faster 6809 programs.
The remapping of op codes was greatly affected by
the 6800 data analysis. Some low occurrence 6800
instruction were combined into consistent 2 byte
instructions, allowing the more useful instruction to
take fewer bytes and execute faster. Also, some 6800
instructions were eliminated completely in favor of 2
instruction sequences. These sequences are generated
automatically by our assembler when the 6800
mnemonic is recognized. This remapping in favor of
more often used functions results in 6809 programs
that require only one half to two thirds as much
memory as 6800 programs, and run faster.

M6809 Registers

What, then, are the pertinent features that
make the 6809 a next generation processor? In the
following paragraphs we will attempt to highlight the
improvements made to the 6800. The programming
model for the 6809 (figure 1) consists of four 8 bit
registers and five 16 bit registers.

The A and B accumulators are the same as those
of the 6800 except that they can also be concatenated
into the A:B pair, called the D register, for 16 bit
operations.

The condition codes are similar to the 6800, with
the inclusion of two new bits. The F bit is the interrupt
mask bit for the new fast interrupt. The fast interrupt

(FIRQ) only stacks the program counter and condition
code register when an interrupt occurs. The interrupt
routine is then responsible for stacking any registers
it uses. The E bit is set when the registers are stacked
during interrupts if the entire register set was saved (as
in nonmaskable and maskable interrupts) or cleared if
the short register set was saved (for a fast interrupt).

On the 6800, an instruction with direct mode
(or page zero) addressing consisted of an op code
followed by an 8 bit value that defined the lower eight
bits of an address, The upper eight bits were always
assumed to be zero. Thus, direct addressing could only
address locations in the lowest 256 bytes of memory.
The 6809 adds versatility to this addressing mode by
defining an 8 bit direct page register that defines the
upper eight bits of address for all direct addressing
instructions. This allows direct mode addressing to
be used throughout the entire address space of the
machine. To maintain 6800 compatibility, the direct
page register is set to 0 on reset.

Four 16 bit indexable register are included in
the 6809. They are the X, Y, U and S registers. The X
register is the familiar 6800 index register, and the S
register is the hardware stack pointer. The Y register
is a second index register; the U register is the user
stack pointer. All four registers can be used in all

X INDEX REGISTER

POINTER REGISTERS

Y INDEX REGISTER

U USER STACK POINTER

S HARDWARE STACK POINTER

PC PROGRAM COUNTER

A B

D

ACCUMULATORS

DP DIRECT PAGE REGISTER

CC–CONDITION CODE REGISTER

OVERFLOW
CARRY–BORROW

ZERO
NEGATIVE
INTERRUPT REQUEST MASK
HALF CARRY
FAST INTERRUPT REQUEST MASK
ENTIRE STATE ON STACK

E F H I N Z V C

Figure 1: 6809 programming model.

indexing operations and the U and S resisters are also
stack pointers, The S register is used during interrupts
and subroutine calls by the hardware to stack return
addresses and machine states.

Addressing Modes

It was out opinion that the best way to improve an
existing architecture and maintain source compatibility
was to add powerful addressing modes. In out view,
the 6809 has the most powerful addressing modes
available on any microprocessor. Powerful addressing
modes helped us achieve out goals of position
independence, reentrancy, recursion, consistency and
easy implementation of block structured high level
languages.

All the 6800 addressing modes (immediate,
Extended, Direct, Indexed, Accumulator, Relative,
and inherent) are supported on the 6809 with the direct
mode of addressing made more useful by the inclusion
of the direct page register (DPR).

The direct page register usage and direct
addressing need some explanation, since they can be
very effective when used correctly. For example, since
global variables are referenced frequently in high level
language execution, the direct page register can be
used to point to a page containing the global variables
while the stack contains the local variables, which are
also referenced frequently. This creates very efficient

code which is safe since the compiler keeps track of
the direct page register. The direct page register can
also be used effectively and safely in a multitasking
environment where the real time operating system
allocates a different base page register for each task.

On the other hand, it would be quite dangerous
to indiscriminately reallocate the direct page register
frequently, such as within subroutines or loops, since
it might become very easy to lose track of the current
direct page register value. Therefore, even though
the direct page register is unstructured, we included
it because, when used correctly, the byte savings are
significant. Also, to make direct addressing more
useful, the read modify write instruction on the 6809
now have all memory addressing modes: Direct,
Extended and Indexed.

The major improvements in the 6809’s
addressing mode were made by greatly expanding
the indexed addressing modes as well as making all
indexable instructions applicable to the X, Y, U and S
registers (see table 3).

Indexed addressing with an offset is familiar
to 6800 users, but the 6809 allows the offset to be
any of four possible lengths: 0, 5, 8 or 16 bits, and
the offsets are signed two’s complements values.
This allows greater flexibility in addressing while
achieving maximum byte efficiency. The inclusion of
the 16 bit offset allows the role of index register and
offset to be reversed if desired. A further enhancement
allows all of the above modes to include an additional
level of indirection. Even extended addressing can be
indirected (as a special indexed addressing mode).
Since either stack pointer can be specified as a base
address in indexed addressing, the indirect mode
allows addresses of data to be passed to a subroutine.

Type

Constant
offset from R

Accumulator
offset from R

Autoincrement/
–decrement R

Constant offset
from program
counter

Extended use nonindexed

Forms

no offset
 5 bit offset
 8 bit offset
 16 bit offset

A register offset
B register offset
D register offset

increment by 1
increment by 2
decrement by 1
decrement by 2

 8 bit offset
 16 bit offset

Source

,R
n,R
n,R
n,R

A,R
B,R
D,R

,R+
,R++
,-R
,--R

n,PCR
n,PCR

Post Byte

Nonindirect

1RR00100
0RRnnnnn
1RR01000
1RR01001

1RR00110
1RR00101
1RR01011

1R000000
1RR00001
1RR00010
1RR00011

1XX01100
1XX01101

+
~

0
1
1
4

1
1
4

2
3
2
3

1
5

+
#

0
0
1
2

0
0
0

0
0
0
0

1
2

Source

[,R]

[n,R]
[n,R]

[A,R]
[B,R]
[D,R]

[,R++]

[,--R]

[n,PCR]
[n,PCR]

[n]

Post Byte

Indirect

1RR10100
defaults to 8-bit

1RR11000
1RR11001

1RR10110
1RR10101
1RR11011

not allowed
1RR10001
not allowed
1RR10011

1XX11100
1XX11101

10011111

+
~

3

4
7

4
4
7

6

6

4
8

5

+
#

0

1
2

0
0
0

0

0

1
2

2

Table 3: Indexed addressing modes. All instructions with indexed
addressing have a base size and number of cycles. The +/~ and +/#
columns indicate the number of additional cycles and bytes for the
particular variation. The post byte op code is the byte that immediately
follows the normal op code.

The subroutine can then reference the data pointed
to with one instruction. This increases the efficiency
of high level language calls that pass arguments by
reference.

M6800 data indicated that quite often the index
register was being used in a loop and incremented
or decremented each time. This moved the pointer
though tables or was used to move data from one
area of memory to another (block moves). Therefore,
we implemented auto-increment and auto decrement
indexed addressing in the M6809. In auto-increment
mode the value pointed to by the index register is used

as the effective address, and then the index register is
increment-ed. Auto decrement is similar except that
the index register is first decremented and then used
to obtain the effective address. Listing 1 is an example
of a subroutine that searches a text; buffer for the
occurrence of an input string. It makes heavy use of
auto incrementing.

Since the 6809 supports 8 and 16 bit operations,
the size of the increment or decrement can be selected
by the programmer to be 1 or 2. The post increment,
predecrement nature of the addressing mode makes it
equivalent in operation to a push and pull from a stack.

00001 NAM AUTOEX
00003 OPT LLEN=80
00004 *
00005 **
00006 * COMPARE STRINGS SUB
00007 *
00008 * FIND AN INPUT ASCII STRING POINTED TO BY THE
00009 * X-REGISTER IN A TEXT BUFFER POINTED TO BY THE
00010 * Y-REGISTER. THE BUFFER IS TERMINATED BY A
00011 * BYTE CONTAINING A NEGATIVE VALUE. ON ENTRY
00012 * A CONTAINS THE LENGTH OF THE INPUT STRING. ON
00013 * EXIT Y CONTAINS THE POINTER TO THE START
00014 * OF THE MATCHED STRING + 1 IFF Z IS SET. IFF Z
00015 * IS NOT SER THE INPUT STRING WAS NOT FOUND
00016 *
00017 * ENTRY:
00018 * X POINTS TO INPUT STRING
00019 * Y POINTS TO TEXT BUFFER
00020 * A LENGTH OF INPUT STRING
00021 * EXIT:
00022 * IFF Z=1 THEN Y POINTS TO MATCHED STRING + 1
00023 * IFF Z = 0 THE NO MATCH
00024 * X IS DESTROYED
00025 * B IS DESTROYED
00026 *
00027 **
00028 *
00029 0100 6 ORG $100
00030 0100 E6 A0 6 CMPSTR LDB ,Y+ GET BUFFER CHARACTER
00031 0102 2A 01 3 BPL CMP1 BRANCH IS NOT AT BUFFER END
00032 0104 39 5 RTS NO MATCH, Z=0
00033 0105 E1 84 4 CMP1 CMPB ,X COMPARE TO FIRST STRING CHAR.
00034 0107 26 F7 3 BNE CMPSTR BRANCH ON NO COMPARE
00035 *SAVE STATE SO SEARCH CAN BE RESUMED IF IT FAILS
00036 0109 34 32 9 PSHS A,X,Y
00037 010B 30 01 5 LEAX 1,X POINT X TO NEXT CHAR
00038 010D 4A 2 CMP2 DECA ALL CHARS COMPARE?
00039 010E 27 0C 3 BEQ CMPOUT IF SO, IT’S A MATCH, Z=1
00040 0110 E6 A0 6 LDB ,Y+ GET NEXT BUFFER CHAR
00041 0112 2B 08 3 BMI CMPOUT BRANCH IS BUFFER END, Z=0
00042 0114 E1 80 6 CMPB ,X+ DOES IT MATCH STRING CHAR?
00043 0116 27 F5 3 BEQ CMP2 BRANCH IF SO
00044 0118 35 32 9 PULS A,X,Y SEARCH FAILED, RESTART SEARCH
00045 011A 20 E4 3 BRA CMPSTR
00046 011C 35 B2 11 CMPOUT PULS A,X,Y,PC FIX STACK, RETURN WITH Z
00047 *
00048 0000 END

Listing 1: 6809 autoincrementing example. This subroutine searches a text buffer for the occurrence of an input string.
In autoincrement mode, the value pointed to by the index register is used as the effective address and the index register
is then incremented.

This allows the X and Y registers to also be used as
software stack pointers if the programmer needs more
than two stacks. All indexed addressing modes can
also contain an extra level of post indirection. Auto
increment and auto decrement are more versatile than
the block moves and string commands available on
other processors.

Quite often the programmer needs to calculate
the offset used by an indexed instruction during
program execution, so we included an index mode that
allows the A, B, or D accumulator to be used as an
offset to any indexable register. For example, consider
fetching a 16 bit value from a two dimensional array
called CAT with dimensions: CAT (100,30). Listing 2
shows the 6809 code to accomplish this fetch. These
addressing modes can also be indirected.

Implementation of position independent code
was one the highest priority design goals. The 6800
had limited position independent code capabilities for
small programs, but we felt the 6809 must make this
type of code so easy to write that most programmers
would make all their programs position independent.
To do this a additional long relative (16 bit offset)
branch mode was added to all 6800 branches as well
as adding program relative addressing. Program
relative addressing uses the program counter much
as indexing uses on of the indexable registers. This
allows all instructions that reference memory to
reference data relative to the current program counter
(which is inherently position independent). Of course,
program relative addressing can be indirected.

The addressing modes of the 6809 have created
a processor that has been termed a “programmer’s
dream machine.” To date all the benchmarks we
have written for the 6809 are position independent,

modular, reentrant and much smaller than comparable
programs on other microprocessors. It is easier to
write good programs on the 6809 than bad ones!

New or Innovative Instructions

The 6809 does not contain dozens of new
innovative instructions, and we planned it that
way. What we wanted to do was clean up the 6800
instruction set and make it more consistent and
versatile. We do not feel a processor with 500 different
assembler mnemonics for instructions is better than on
with 59 powerful instructions that operate on different
data in the manner, for example, the 6809 contains
a transfer instruction of the form TFR R1, R2 that
allows transfer of any like sized registers. There are
42 such valid combinations on the 6809, and clearly
one TFR instruction is easier to remember than 42
mnemonics o the form: TAB, TBA, TAP, TXY, etc.
Also an exchange instruction (EXG) exists that has
identical syntax to the TFR instruction and has 21
valid forms. In the time it took to read three sentences
you just learned 63 new 6809 instructions! As another
example, we combined the instructions that set and
cleared condition code bits on the 6800 into two 6809
instructions that AND or OR immediate data into the
condition code register.

Other significant new instructions include
the new 16 bit operations, The D register can be
loaded, stored, added to subtracted from, compared,
transferred, exchanged, pushed and pulled. All the
indexable registers (16 bits) and be loaded, stored and
compared. The load effective address instruction can
also be used to perform 8 or 16 bit arithmetic on the
indexable registers as described later.

Two significant new instructions are the multiple
push and multiple instructions on the 6809. With
one 2 byte instruction any register or set of registers
can be pushed or pulled from wither stack. These
instructions greatly decrease the overhead associated
with subroutine calls in both assembly and high level
language programs. In conjunction with instructions
using auto-increment and auto decrement, the 6809
can efficiently emulate a stack computer architecture,
which means it should e efficient for Pascal p-code
interpreters and the like.

The orders in which the registers are pushed

00010 0100 ORG $100
00011 0100 108E 1000 4 LDY #CAT LOAD BASE ADDRESS OF ARRAY
00012 0104 96 32 4 LDA SUB1 GET FIRST SUBSCRIPT
00013 0106 C6 64 2 LDB #100 MULTIPLY BY FIRST DIMENSION
00014 0108 3D 11 MUL
00015 0109 D3 33 6 ADDD SUB2 ADD SECOND SUBSCRIPT
00016 010B EC AB 9 LDD D,Y FETCH VALUE

Listing 2: Array subscript calculations. This 6809 program fetches a 16 bit value from a two dimensional array called CAT, with
dimensions: CAT (100,30).

Advertisment

for

C&K Components, Inc.
15 Riverdale Avenue, Newton, MA 02158

or pulled from the stacked is given in figure 2. Note
that not all registers need to be pushed or pulled, but
that the order is retained if a subset is pushed. This
stacking order is also identical to the order used by all
hardware and software interrupts.

One new instruction in the 6809 is a sleeper. The
load effective address to indexable register (LEA)
instruction calculates the effective address from the
indexed addressing mode and deposits that address in an
indexable register, rather than loading the data pointed
to by the effective address as in a normal load. This
instruction was originally created because we wanted
a way to let the addressing mode hardware already
present in the processor calculate the address of a data
object so that it could be passed to a subroutine. After
the index addressing modes were completed it was
realized the LEA instruction had many more uses, and
once again, allowed us to combine other instructions
into one powerful instruction. For example to add the
D accumulator to the Y index register, the instruction
is: LEAY D, Y; to add 500 to the U register: LEAU
500, U; and to add 5 to the value is the S register and
transfer the sum to the U register: LEAU 5, S.

In writing position independent read only memory
programs it is sometimes necessary to reference data
in a table within the same read only memory. This is
generally a tedious process even in computers that
claim to support position independent code because
the register that points to the table must eventually
contain an absolute address. The LEA instruction, in
conjunction with program counter relative addressing,
makes this possible with one instruction on the 6809.
For example, to put the address of a table DG located
in a relative read only memory into indexable register
U: LEAU DG, PCR; or to find out where a position
independent read only memory is located: LEAY *,
PCR (or TFR PC, Y). Our benchmarks show the LEA
instruction to be the most used new 6809 instruction
by far.

An unsigned 8 bit by 8 bit to 16 bit multiply was
provided for the 6809. The A accumulator contains
one argument and the B the other. The result is put
back onto the A:B (D) accumulator. A multiply was
added because multiplied are used for calculating
array subscripts, interpolating values and shifting, as
well as for more conventional arithmetic calculations.
An unsigned multiply was selected because it can be
used to form multi-precision multiplies.

Another facet of good programming practice
that we wanted to encourage was the use of operating
system calls or software interrupts (SWI). The 6800
SWI has been effectively used by 6800 support
software for breakpoints and disk operating system
calls. That’s nice, but unfortunately there was only
one software interrupt, and since Motorola’s software
used that one the customer found it difficult to share.

The 6809 provides three software interrupts, one of
which Motorola promises never to use. It is available
for user systems.

One new instruction on the 6809, SYNC, allows
external hardware to be synchronized to the software
by using one of their interrupt lines. Using this
instruction, very tight, fast instruction sequences can
be created when it is necessary to process data from
very fast input and output devices. Listing 4 gives
an example of the use of SYNC. It is assumed that
the A side of the peripheral interface adapter (PIA) is
connected to a high speed device that transfers 128
bytes of data to a memory buffer. When the device
is ready to send a piece of data, it generates a fast
interrupt (FIRQ) from the A side of the peripheral
interface adapter. Program lines 12 and 13 set up the
transfer; lines 16 through 20 are the synchronization
loop. On each pass through the loop, the program
waits at the SYNC instruction until any interrupt
line is pulled low. When the interrupt line goes low,
the processor executed the next instruction. In order
to use SYNC, all other devices tied to any of the
interrupt line must be disabled. For this example it
was assumed that the B side of the peripheral interface
adapter also had interrupts enabled; program lines 9
though 11 disable the interrupts and line 21 through
23 reenable it. Line 14 is included to keep the interrupt
by the A side of the peripheral interface adapter from
going to the interrupt routine. Note that interrupts do
not need to be enabled for SYNC to work, and in fact

6809 STACKING ORDER

PUSH ORDER

PULL FROM STACK�
TOP OF STACK�
PUSH ONTO STACK

FFFF

0000

10,S

PCL

PCH

U/SL

U/SH

YL

YH

XL

XH

DPR

B

A

CCR

8,S

6,S

4,S

3,S

2,S

1,S

0,SSP (OR US)

Figure 2: 6809 push/pull and interrupt stacking order.

are normally disabled.
Another improvement to the instruction set

was brought about by the inclusion of the hardware
signal BUSY. BUSY is high during read/modify/write
types of instructions to indicate to shared memory
multiprocessors that and indivisible operation is in
progress. As shown in figure 3 this fact can be used
to turn existing instructions into the LOCK and
UNLOCK necessary for mutual exclusion of critical
sections of the program, or for allocation of resources.

And lastly, never let it be said the 6809 has
no SEX appeal—sign extend, that is. The SEX
instruction takes an 8 bit two’s complement value in
the B accumulator and converts it to a 16 bit two’s
complements value in the D accumulator by extending
the most significant bit (sign bit) of B into A.

Table 4 is a convenient way to look to look a all
the instructions available on the 6809. The notation
first page/second page/third page op codes have the
following meaning: first page op codes have only one
byte of op code. For example: load A immediate has an
op code of hexadecimal 68. All second page op code
are preceded by a page op code of 10. For example,
the op code for CMPD immediate is hexadecimal

1083 (two bytes). Similarly third page op codes are
preceded by a hexadecimal 11. A CMPU immediate
is 1183. Some instructions are given two mnemonics
as a programmer convenience. For example, ASL and
LSL are equivalent. Notice that the long branch op
codes LBRA and LBSR were brought onto the first
page for increased code efficiency.

Stacks
As mentioned previously, the 6809 has many

features that support stack usage. Most modern block
structured high level languages make extensive use of
stacks. Even though stacks are useful in the typical
textbook example of expression evaluation, their major
usage in languages such as Pascal is to implement
control structures. Microprocessor users already
realize the advantage of a stack in nesting interrupts
and subroutine calls. Most high level languages also
pass data on the stack and allocate temporary local
variables from the stack.

Listing 4 and figure 4 show an example of a
high level language subroutine linkage. Before calling
the subroutine the caller pushed and addresses of
two arguments and the answer on the stack and then
executed the jump to subroutine which puts the return
program counter on the stack. The subroutine then
saves the old stack mark pointer on the stack as well
as reserving space on the stack for the local variables
for the subroutine. In this example, size locations are
used but the subroutine body during calculation. At
this point the stack mark pointer is set to a new value
for this subroutine. The stack mark pointer is used
because the S register may very during execution of
the subroutine body due to local subroutines, etc. It
is much more convenient for the compiler to generate
offsets to the parameters is the U is used for this
purpose instead of the S.

Once U is set it is used to fetch the two arguments
using indexed indirect addressing. The sub-routine

00008 0100 ORG $100
00009 0100 B6 F002 5 LDA PIABC LOAD PIA CONTROL REG. - SIDE B
00010 0103 84 F7 2 ANDA #$F7 TURN OFF B-SIDE INTERRUPTS
00011 0105 B7 F002 5 STA PIABC
00012 0108 8E 3000 3 LDX #BUFFER GET POINTER TO BUFFER
00013 010B C6 80 2 LDB #128 GET SIZE OF TRANSFER
00014 010D 1A 50 3 ORCC #$50 DISABLE INTERRUPTS
00015 * WAIT FOR ANY INTERRUPT LINE TO GO LOW
00016 010F 13 2 LOOP SYNC SYNCHRONIZE WITH I/O
00017 0110 B6 F000 5 LDA PIAAD LOAD A-SIDE DATA; CLEAR INTERRUPT
00018 0113 A7 80 6 STA ,X+ STORE IN BUFFER
00019 0115 5A 2 DECB DONE?
00020 0116 26 F7 3 BNE LOOP BRANCH IS NOT
00021 0118 B6 F002 5 LDA PIABC TURN B-SIDE INTERRUPTS BACK ON
00022 011B 8A 08 2 ORA #$08
00023 011D B7 F002 5 STA PIABC

Listing 3: Hardware synchronization using SYNC, a new instruction in the 6809 processor that allows external hardware to be
synchronized to the software by using one of the interrupt lines. Very fast instruction sequences can be created using SYNC when it is
necessary to process data from very fast input and output devices.

Figure 3: The ASR (arithmetic shift right) instruction is used as a “test and
clear” and ST (store) is used for “unbusy.” These primitive operations are
used for implementing critical section exclusion on the 6809.

INSTRUCTIONS

ASR 0 C0 0 0 0 0 0 1

BEFORE

NOT BUSY

10 0 0 0 0 0 0

NOT BUSY
GRANTED

NOT GRANTED

00 0 0 0 0 0 0

BUSY

C0 0 0 0 0 0 1

NOT BUSY

AFTER

ASR 0 C0 0 0 0 0 0 0

BUSY

LDA #1�
STA C0 0 0 0 0 0 0

BUSY

body presumable does something with the arguments
and finishes with an answer in the D register. The
subroutine exit saved this value. It then puts the return
address in X and restores the previous stack mark
pointer. The whole stack is then cleaned up (deleted)
and return is made to the caller.

Motorola 6800 users should note that the stack
pointers on the 6809 point to the last value pushed on
the stack rather than the next free location, as on the
6800. This was done so that auto-increment and auto
decrement would be equivalent to pulls and pushes.
For example: STA ,-S is equivalent to PSHS A; and
LDA ,S+ is equivalent to PULS S. This also means
the X and Y registers can be used as stack pointers if
the programmer desires. For example: STA ,-X is a
push on a stack defined by X. The possible ambiguity
between where the stack pointer points on the 6800

and the 6809 may be less of a problem than it seems,
since of 6800’s TSX becomes the 6809’s TFR S,
X without adding 1 and TXS becomes a TFR X, S
without subtracting 1 – think about it. The only danger
is in programs that used the stack pointer as an index
register. In these programs the stack pointer may point
on location away from where it did previously.

Interrupts

The 6809 has three fully vectored hardware
interrupts. The nonmaskable interrupt (NMI) and
maskable interrupt (IRQ) are the same as the 6800’s
NMI and IRQ. The new interrupt is the fast maskable
interrupt, or FIRQ, that stacks the program counter
and condition code register only on interrupt. Table
5 gives the addresses of the interrupt vectors for the

Table 4: 6809 op code map and cycle counts. The numbers by each op code indicate the number of machine cycles required to execute
each instruction. When the number contains an I (eg: 4+I), and additional number of machine cycles equaling I may be required (see
table 3). The presence of two numbers, with the second on in parentheses, indicate that the instruction involves a branch. The larger
number applies if the branch is taken. The notation first page/second page/third page has the following meaning: first page op codes
have only one bye of op code (eg: load A immediate has an op code of hexadecimal 86). All page 2 op codes are preceded by a page
op code hexadecimal 10 (eg: the op code for CMPD immediate is hexadecimal 1083 – two bytes). Similarly third page op codes are
preceded by a hexadecimal 11. A CMPU immediate is 1183. Some instructions are given two mnemonics as a programmer convenience
(eg: ASL and LSL are equivalent). Notice that the long branch op codes LBRA and LBSR were brought onto the first page to increased
code efficiency.

Most Significant Four Bits

Le
as

t S
ig

ni
fic

an
t F

ou
r B

its

DIR REL ACCA ACCB IND EXT IMM DIR IND EXT IMM DIR IND EXT
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1
6
NEG0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

6
COM
6
LSR

6
ROR
6
ASR
6 ASL
(LSL)
6
ROL
6
DEC

6
INC
6
TST
3
JMP
6
CLR

4+I
LEAX

 2 2 6+I 7
 NEG

 2 4 4+I 5
 SUBA

 2 4 4+I 5
 SUBB
 2 4 4+I 5
 CMPB
 2 4 4+I 5
 SBCB
 2 4 4+I 5
 ADDD
 2 4 4+I 5
 ANDB
 2 4 4+I 5
 BITB
 2 4 4+I 5
 LDB

 2 4 4+I 5
 EORB
 2 4 4+I 5
 ADCB
 2 4 4+I 5
 ORB
 2 4 4+I 5
 ADDB
 3 5 5+I 6
 LDD
 5 5+I 6
 STD

 4 4+I 5
 STB

 2 4 4+I 5
 CMPA
 2 4 4+I 5
 SBCA

 2 4 4+I 5
 ANDA
 2 4 4+I 5
 BITA
 2 4 4+I 5
 LDA

 2 4 4+I 5
 EORA
 2 4 4+I 5
 ADCA
 2 4 4+I 5
 ORA
 2 4 4+I 5
 ADDA

 7 7 7+I 8
 BSR JSR

 4 4+I 5
 STA

5,7,7+I,8
CMPU

4,6,6+I,7
SUBD

5,7,7+I,8
CMPD

 2 2 6+I 7
 COM
 2 2 6+I 7
 LSR

 2 2 6+I 7
 ROR
 2 2 6+I 7
 ASR
 2 2 6+I 7
 ASL (LSL)
 2 2 6+I 7
 ROL
 2 2 6+I 7
 DEC

 2 2 6+I 7
 INC
 2 2 6+I 7
 TST

 2 2 6+I 7
 CLR

 3+I 4
 JMP

4+I
LEAY
4+I
LEAS
4+I
LEAU
5+1/by
PSHS
5+1/by
PULS
5+1/by
PSHU
5+1/by
PULU

5
RTS
3
ABX
6/15
RTI
20
CWAI
11
MUL

19/20/20
SWI/2/3

3 BRA

3 BRN/
5 LBRN
3 BHI/
5(6)LBHI
3 BLS/
5(6) LBHS
3 BHS
5(6) BCC
3 BLO/
5(6) (BCS)
3 BNE/
5(6) LBNE
3 BEQ/
5(6) LBEQ
3 BVC/
5(6) LBVC
3 BVS/
5(6) LBVS
3 BPL/
5(6) LBPL
3 BMI/
5(6) LBMI
3 BGE/
5(6) LBGE
3 BLT/
5(6) LBLT
3 BGT/
5(6) LBGT
3 BLE/
5(6) LBLE

PAGE
2
PAGE
3
2
NOP
2
SYNC

5
LBRA
9
LBSR

2
DAA
3
ORCC

3
ANDCC
2
SEX
8
EXG
7
TFR

2 3 4 5 6 7 8 9 A B C D E F F

 4,6,6+I,7 5,7,7+I,8 5,7,7+I,8
 CMPX CMPY CMPS

 3,5,5+I,6 4,6,6+I,7
 LDX LDY

 3,5,5+I,6 4,6,6+I,7
 LDU LDS

 5,5+I,6 6,6+I,7
 STX STY

 5,5+I,6 6,6+I,7
 STU STS

6809.
A new signal (IACK) has been added that is

available anytime an interrupt vector is fetched. This
signal together with address bus lined A1 through A3
can be used to implement in interrupt scheme in which
each device supplies its own interrupt vector.

The interrupt control and prioritization
logic of the 6809 have been defined very carefully –
not redundant or indeterminate conditions can exist
when several interrupts occur simultaneously. The
details of the interrupt structure are precisely defined
in Motorola documentation for the 6809.

Part 2, entitled “instruction Set Dead-Ends, Old
Trails and Apologies,” will be a question and answer
discussion about the design philosophy that went into
the 6809. ■

14

12

10

8

6

5

4

3

2

1

0

OFFSET FROM
STACK MARK
(U)

ADDRESS

OF ARG 1

ADDRESS

OF ARG 2

ADDRESS

OF ANS

RETURN

PC'

OLD STACK

MARK (U')

LOCAL

VARIABLES

U'

S'

U

S

FFFF Restart
FFFC NMI
FFFA SWI
FFF8 IRQ
FFF6 FIRQ
FFF4 SWI2
FFF2 SWI3
FFF0 Reserved

Table 5: Hexadecimal addresses of the 6809 restart and interrupt
vectors.

00006 0500 34 40 6 SUBR PSHS U SAVE OLD STACK MARKER
00007 0502 32 66 5 LEAS 6,S RESERVE LOCAL STORAGE
00008 0504 1F 43 6 TFR S,U GET NEW STACK MARKER
00009 0506 EC D8 0E 10 LDD [14,U] GET ARGUMENT 1
00010 0509 AE DE 0C 10 LDX [12,U] GET ARGUMENT 2
00011 *
00012 * SUBROUTINE BODY
00013 *
00014 050C ED D3 0A 10 STD [10,U] SAVE ANSWER
00015 050F AE 48 6 LDX 8,U GET RETURN ADDRESS
00016 0511 EE 46 6 LDU 6,U RESTORE U’
00017 0513 32 E8 10 6 LEAS 16,S POP EVERYTHING OFF STACK
00018 0516 6E 84 3 JMP ,X RETURN

Listing 4: Use of stacks on the 6809 processor. In this typical high level language subroutine example, U’ and S’ are the mark stack
pointer and the hardware stack pointer, respectively, just prior to the call. U and S are the same registers during execution of the
subroutine body. Before calling the subroutine the caller pushes the address of two arguments and the answer on the stack and then
executes the jump to subroutine which puts the return program counter on the stack. The subroutine then saves the old stack mark pointer
on the stack as well as reserving space on the stack for the local variables for the subroutine (see figure 4).

A Microprocessor for the Revolution: The 6809

Part 2: Instruction Set Dead Ends, Old Trails and
Apologies

Terry Ritter and Joel Boney Motorola, Inc.
3501 Ed Bluestein Blvd
Austin, TX 78721

In part 1 of this series (see January 1979
BYTE, page 14) we discussed the instruction set and
other details of the Motorola 6809 processor. Part
2 is a question and answer discussion of the design
philosophy that went into the 6809.

Any change from old to new inevitably brings
criticism from someone. Indeed, any failure to
change to include someone’s pet ideas brings its own
criticisms. We have not been isolated from sometimes
severe criticism, nor from its political implications.

However, a number of our decisions have been
reasonably challenged, and here we hope to present
illumination and defense. While we are aware of a
number of improvements which might have been
included, the whole point is to sell a reasonably sized
(and thus reasonably priced) integrated circuit. We
hope that architectural errors of commission, as they
are found, will be seen in light of the complete design.
We are not aware of any such errors at this time.

Point 1:

The replaced instructions (PSHA/PULA, TAB/
TBA, INX/DEX) all take more cycles and bytes than
before. Why did you do such a thing?

Answer 1:

Consider: the question is not just PSHA/PULA,
but rather PSHA/PULA/PSHB/PULB/PSHX/PULX/
PSHY/PULY/PSHU/PULU, etc, as well as similar
op codes for the other stack. There are only 256 1
byte op codes. If the PUSHs and PULLs are made 1
byte, others must be made 2 byte, and these will take
more cycles and bytes than before. And the macro-
sequenced PUSH or PULL instructions are more
efficient than byte op codes when more than one
register is involved.

Similarly, as more registers are added, the number
of possible transfer paths become combinatorially
larger. Do you really want to give up that number of 1
byte op codes?

As for INX/DEX, we find that these we
frequently used in 6800 code because they were
more convenient than any other alternatives. We
now offer auto incrementing and auto decrementing
indexing as a viable (ie.: shorter, in cycles and bytes)

Copyright 1978 by
Terry Ritter and Joel
Boney

Photo 1: Layout.
Layout designer
Tony Riccio adds
a line in a large
layout cell. Their
various colored lines
represent different
types of conductors
(metal, polysilicon,
N_, etc) which will
be formed on the
integrated circuit.
(The yellow dots
represent problems
to be corrected.)

alternative. We also allow arbitrary additions to X, Y,
U, and S.

Point 2:

I don’t see any facility for expanding the 64K
address space.

Answer 2:

True. Memory expansion is possible, but
consider this: microprocessors are products of a mass
production technology processor cost is no longer a
system limiting factor. It is generally inappropriate to
use a single $20 processor to control $10,000 worth
of memory; the single processor could use only a
fraction of the bandwidth resource available in that
much memory (here, bandwidth means the maximum
possible rate of change of storage state under processor
control). A far more reasonable approach is to place the
same total store on ten processors and give yourself
the possibility of major throughput improvement.
Naturally you’ll have to learn how to control all this
power, but if you’re an innovative systems designer,
that’s exactly your job.

There are two principal divisions of
multiprocessor systems, depending on the degree of
coupling between the processors. Closely coupled
processors usually communicate through some
common memory; loosely coupled processors

communicate through input/output ports, serial lines,
or other “slow” communications channels. Loosely
coupled systems can usually be understood as
networks of quasi-independent processors.

Now, let’s consider a concept that we call “smart
memory.” One reason for wanting more address space
on a processor is to randomly access a large store of on
line data. Most of your processing is spent cataloging
data, sorting data, moving, searching and updating
data. If you want to handle more data, you put on more
memory and the system gets bigger and slower.

But suppose you put a processor on each
reasonable piece of memory (16K or whatever).
Make the program for that processor really dumb -
make it just take orders for data. Its whole purpose is
to handle data for the command processor; it stores,
moved, searches and updates. But for now, it does
only memory operations. Now hook a lot of these
“smart memory” modules onto your system (the IEEE
488 bus should work), and command a search. All the
modules search in parallel, and if you grow and put
more modules, you handle more data just as fast as
ever! The second major approach to multiprocessor
systems is what we call shared bus multiprocessing.
Multiple microprocessors are closely coupled through
a common bus and a proper subset of their memory
address space. It is crucial to see the common bus
as the bandwidth limiting resource; each processor
should use its own local memory and stay off the

Photo 2: Breadboard
design. After partitioning
the logic, the mos (metal
oxide semiconductor)
diagram is translated to
TTL. The required ten
boards are then designed
and built. Meanwhile,
Bill Keshlear validates
the logic changes on the
master copy of the logic
diagrams, since they will
imply changes on the
boards.

common bus until it needs access to the common store.
Multiple requests for common memory access

might be issued by various processors at exactly the
same moment. It is there fore necessary to arbitrate
among them, switching exactly one processor onto
the common bus, and allowing it to proceed with its
memory access while the other are held not-READY.

It should be clear that the same concept (a
common bus arbitration and switching node) can
be hierarchically extended. Further, the addressing
capability can be expanded and possibly remapped at
each node to allow fast random access to huge amounts
of on line mass storage. Such obvious extension is left
as an exercise for the serious student. Perhaps you are
thinking that you can build it, but nobody can write
the software to control it. We are not insensitive to the
problem, just unhappy with the attitude. We worked
hard to give you the tool; all you have to do is learn to
use it. Every new technology is like this - our scientists
still don’t know how to fully control the atom, but that
doesn’t stop atomic fusion from being one of the most
attractive “games” around since the payoffs are huge.

Nobody has a chance to develop complex
multiprocessor software until she or he has a real
multiprocessor system. Now for $500 and a little
work, you’ve got the hardware. It’s time to start
learning to control these systems. If it’s hard one way,
do it another. The power is there for use.

Point 3:

You still didn’t include block operations, did
you?

Answer 3:

No - and we could have. But have you looked
at how often block instructions could really be used
in your programs? And how much code is needed to
duplicate them yourself? And how often they don’t
really do exactly what you wanted? And how fast they
would run compared to your programmed version?
Please do look. We think the auto-increment and auto-
decrement index addressing is a far more general
solution.

Point 4:

No bit manipulation, either.

Answer 4:

Are you really willing to pay 10 to 20 percent
more just for bit manipulation? Program coded bit
manipulation takes a little longer, but is more general,
and probably is located is a very lightly used portion

of your program, thus having very little effect on your
total throughput or program size.

Point 5:

Why no undefined op code trap?

Answer 5:

Because the machine is a random logic
implementation. The unused op codes are used as
‘don’t cares’ in derivation of internal logic equations,
thus allowing reduced logic and integrated circuit size.
Failure to include the don’t cares in the logic equations
would result is a larger and more expensive circuit.

Point 6:

Some other processors allow both indexed before
indirect (indexed indirect) operation and indirect
before indexed (indirect indexed) operation, but yours
does not. Why?

Answer 6:

First of all, we wanted our addressing modes to
operate on all of our memory instructions. Secondly,
indirect indexed addressing has much lower utility
than our indexed indirect form. Thirdly, we didn’t
strip down our instruction set, so real features were
getting a little precious. Everything has to fit on one
chip, remember.

We had considered the possibility of including
a sort of chained addressing, in which the memory
data would be interpreted as a new indexed postbyte
capable of specifying a complete new addressing
operation. This sort of thing could continue to
indefinite levels, of course. But such an instruction
would then be executing data, which is usually a
bad idea (self-modifying code) and is also the reason
why we included no EXEcute instruction. (Naturally,
EXEcute can be emulated if you really need it. but
since EXEcute is usually used to make up for the
lack of powerful addressing modes, it will not likely
be missed from the 6809) Furthermore, this executed
data would almost certainly be discontinuous in the
memory space, making even the analysis of the simple
case (read only memory) programs extremely difficult.
Placing such an uncontrollable gimmick in a processor
design would be like placing a glittering knife in front
of a baby, and would be similarly irresponsible.

Point 7:

You have a MULtiply, but no DIVide.

Answer 7:

True enough. Multiply operations are required in
high level language subscript array calculations, but
how often do you really need divide? Do you really
want to pay for something you will rarely use and can
do easily with a program. Additionally, the unsigned
multiply is easily capable of extension into multiple
precision arithmetic. (Try that with a singed multiply!)
Divide does not decompose as nicely. This combined
with the absence of similar instructions in the machine
(divide needs 24 bits of parameters, both in and out)
was enough to leave it out.

Point 8:

Your registers are all special purpose.

Answer 8:

Well, in a way, as we have 16 bits of accumulator
and 64 bits of usable pointers plus some others. This
basic dichotomy of data and pointers to data exists

in practice, and is therefore rarely a problem with
out implementation. But the EXG instruction allows
convenient manipulation between these groups in any
unusual circumstances.

Point 9:

Why did you include all those new addressing
modes? I’ll never use them.

Answer 9:

We expect that you will use the new addressing
modes, and quite heavily. There are a lot of different
indexed options. But notice that the large number of
different modes is a result of including all permutations
of a few basic ideas.

Fundamentally, you can index from any pointer
register (x 4), use indexed indirect access (x 2), and
have accumulator offsets (x 3) or constant offsets of
up to 16 bits in three versions (x 3) (see box at lower
right). But if you work in assembly language, you don’t
need to figure addressing so the different constant
offsets modes may be ignored. And if you select an
addressing mode which is not available, the assembler
will politely inform you of your indiscretion.

Alternately, you can specify auto-increment or
auto-decrement operations (x 2), by either one or two
(x 2), which may be indirected (x 1.5) (except there is
no indexed auto-increment and auto-decrement by one
indirect - think about it). Finally, constant offsets are
allowed from the program counter (x 3) and these may
also be indirected (x 2).

There are a lot of modes, no doubt about it.
But relatively few new ideas are required to gain full
control over those powerful new features.

Point 10:

I would have liked an operating system call
instruction which carried a parameter to the operating
system.

Answer 10:

So would we. Unfortunately, the location I want
to use for parameters may not (and probably will not)
be what you want to use. It is desirable to allow both
constant and variable parameters to the operating
system. What you do get is two more trap-like
software interrupt (SWI) instructions; the instructions
SWI2 and SWI3 do not mask interrupt as SWI does,
thus allowing use even in interrupt derived programs.
Parameters may be passed in any register, or on the
stack, or as the next byte of in line code. All of this
will require some overhead, but the scheme is for

Photo 3: Visual inspection. Some of the gross processing errors or problems
that occur with probing equipment can be detected visually. Here, lead
production operator Mary Celedon checks a 6802 wafer.

more general than a trap that carries a parameter.

Point 11:

Tell me again about the stack pointers: why two
stack pointers?

Answer 11:

Good point. The original reason for adding
the user stack pointer was to facilitate the creation
of a data stack in memory that is separate from
the program stack. This avoids one of the serious
problems of using a second generation processor
in a modular programming environment - that of
returning parameters to a calling routine. We want
to pass parameters in a position independent manner,
of course, but the return from subroutine (RTS)
instruction uses the top element of the stack as a return
address, and this address is placed on the stack before
the subroutine is entered. On the 6800 there will be
a lot of stack rearrangement going on to get around
this problem. The user stack pointer was created as
a new stack unencumbered with return addresses (or
interrupt state information) to allow data to be passed
between routines of different levels in a reasonable
manner. And since the new stack works exactly like
the old, there is a relatively small silicon cost involved.

We do suspect, however, that many programmers
will elect to accept the overhead involved with
passing parameters on the hardware stack (note that
the overhead problem is greatly reduced with the
6809). These programmers will be concerned with
the access of parameters placed on the stack by higher
level routines. Notice that, as more elements are added
to the stack, these same parameters are referred to
by varying offsets with respect to the stack pointer
itself: this is bad, since it becomes difficult to analyze
exactly which value is being accessed by any given
subroutine. Thus many programmers will use the U
register as a stack mark pointer, fixed at some previous
location of the stack pointer. All lower level modules
will then be able to refer to the same data by identical
offsets from the U register.

Point 12:

Why do the 6809 stack pointers point to the last
item on the stack rather than the next free location, as
on the 6800?

Answer 12:

This architectural change was virtually mandated
by the following the chain of logic that resulted from
extending the 6800 into double byte, auto-increment

and stack indexable operations.
First, let us assume the above extensions with

a 6800 style stack: the stack pointer thus points
one byte below (lower in memory) the last byte
deposited. Naturally the other pointers should work
similarly (allowing their use as additional stacks, and
requiring no new understanding). This means that the
auto-index operations have to be preincrement and
postdecrement. Now, suppose we have a stack or table
of double byte data; the data pointer must be set up
one byte below the data to prepare for auto-increment
(or pull) operations. To access the first value the
expression LDD ,+S must be used, while succeeding
operations appear to need LDD ,++S. This result is
not great for loops. Alternately, the stack pointer
could be made to point two bytes above the stack for
double byte data only. This would require different
offsets from the stack pointer (to access, say, the top
of the stack) depending upon the size of the data being
accessed. Different offsets would also be required,
depending on whether the data was just being used,
or being pulled from the stack. This is workable, but
not great conceptually. Another possibility is to form
the effective address from the value of the pointer
after only the first increment. This “kludge” solution
would be hard to implement anyway, so we changed
the stacks.

This change of reasoning is an example of the
difference between architectural design and just
slapping instructions together.

Point 13:

Why not have more registers?

Answer 13:

Good designs are often the result of engineering
compromises. To meet product size goals, only so
many things can go on an integrated circuit. You can
have registers, or features, or some combination. The
6809 does have approximately 20 addressing modes.

Registers for the sake of registers amount
to little more than separate, very expensive and
restricted memory areas. The register resource is
always insufficient to hold temporary results of a
large program, and must be reallocated in various
routines. This allocation process is an error prone
programming overhead. A separate register set for
interrupt processing is suitable only for one interrupt
level and, otherwise, is mostly wasted.

A few registers fully supported by features are
better than just having a lot of registers.

Point 14:

The notation (x n)
means there are n
ways to perform
that particular
operation. (x
1.5) means there
are two ways
to perform that
operation but not
every addressing
mode is allowed…
RGAC

Why no instructions to load or store the direct
page register?

Answer 14:
The direct page register is one of those possible

dangerous features which was just too good to pass up
(in terms of substantial benefits for minimum cost).
The benefits include an operation length reduction of
33 percent for instructions using absolute address and
a concurrent throughput increase of 20 percent. It now
becomes possible to optimize code, perhaps allowing
an oversized program to fit within discrete read only
memory boundaries. The direct page register may
also be used in a multitasking environment to allow
single copies of routines to operate with multiple
independent processes. However, providing a separate
stack area and having each routine store local values
on the stack may be a better solution.

Because a number of 6809 instructions (eg: INC/
DEC, ASL/ASR/ROL/ROR/LSL, TST/ COM/CLR/
NEG) operate directly on memory, the direct page area
may be used very much like a processor with 256 8 bit
registers to hold counters, flags and serial information.
So, perhaps most importantly, the direct page register

relaxes the system requirement for programmable
memory at a particular location (page 0) to use direct
addressing; the cost is a single 8 bit register and no
new instructions.

The programmer is cautioned to tread carefully
when using direct page register. All forms of absolute
addressing for temporary values and parameters
present problems in the development of large programs.
Attempts to enlarge the number of direct locations by
manipulating the direct page register may be tricky.
And manipulation of the register by subroutines may
lead to errors which switch the calling routines direct
page in remote (ie.: subroutine) unobvious code.
Therefore, this register is made deliberately difficult to
play with. Typically, it should be set up once and left
there. To load the direct page register you can proceed
as follows: EXG A,DP; LDA #NEWDP; EXG A,DP.
Alternately, the direct page register is also available in
PUSH/PULL instructions, but misuse is discouraged
through lack of LDDP and STDP.

Point 15:

You preach consistency, yet you give us LEA, an
instruction with different condition codes for different
registers. Why is this so?

Answer 15:

The Z flag is unaffected by LEAS or LEAU but

conditionally set by LEAX or LEAY depending on
the value loaded into the register. This provides 6800
compatibility with INX/DEX (implemented as LEAX
1,S or LEAX -1,X) and INS/DES (implemented as
LEAS 1,S and LEAS - 1,S), respectively.

Now clearly, if most 6800 programs are going to
run on the 6809, the use of INX/DEX for event counts
must be recognized. But in 6809 programs, releasing
local stack area before executing RTS will b a very
frequent action (LEAS -9,S; RTS) “cleaning up the
stack.” You do want to return a previous condition
code value undamaged by the LEAS, so you get two
types of LEA.

Point 16:
What about position independent code? Doesn’t

the 6800 allow it, too?
Answer 16:
Position independent code is one crucial factor

in achieving low cost software. (Position independent
temporary storage and input/output must also be
available.) Only read only memories which may be
used in arbitrary target systems are economically
viable in the context of mass production. And only

these read only memories can result in low cost
firmware for us all.

The 6800 is capable of position independent code
execution in relatively small programs. Somewhere
around a 4 K byte limit the program can no longer
support all control-transfer paths using branch branch
instructions (even allowing the use of intermediate
branch “islands”). Either a long branch subroutine
must be used (at a cost of 100+ cycles for each LBSR)
or the program must be made position dependent.

Point 17:

What about dynamic memory?

Answer 17:

There are two problems associated with dynamic
memories: address bus multiplexing and refresh.
Address bus multiplexing is the most severe problem
but requires multiplexing 6+6 address lines (for
4 K memories) or 7 + 7 lines (for 16K memories);
these values are particularly inconvenient for 8 bit
processors (which usually multiplex address/data).
Thus, we have yet to see a processor address this
problem. Microprocessors that automatically refresh

memory during most unused bus cycles waste
power on unnecessary refreshes and unnecessarily
increase bus activity. The 6809 can easily refresh
dynamic memory in software (a timer cause interrupt

Photo 4: Editing the layout. Drafting manager Wayne Busfield and senior layout designer Rick Secrist make changes indicated
by engineering analysis. This iterative process improves performance and production yield, and thus lowers cost.

execution of FCB $1063 times, then RTI), or can
support hardware refresh (a direct memory access
[DMA] sequence, or isolatec board automatic refresh)
at minimal cost.

Point 18:

What about price?

Answer 18:

The 6809 will be more expensive than in
production second generation 8 bit designs. For one
thing, it is bigger and also new - both reasons imply
reduced yield compared to older parts. A moderately
higher price should not be a problem, since the
processor cost is a very minor part of the price of
a whole system. The total 6809 system should be
nearly as powerful and much less expensive than 16
bit designs. The cost of not using 6809, on the other
hand, will likely be severe in terms of increased
programming error rates, larger read only memories
and decreased throughput.

In “Part 3: Final Thoughts” (March 1979 BYTE),
we will conclude this series with a discussion of clock
speed, timing, condition codes and software deign
philosophy. ■

Table 1: 6809 instruction set.

8 BIT OPERATIONS
Mnemonic Description
ABX Add B register to X register

unsigned.
ADCA, ADCB Add memory to accumulator with

carry.
ANDA, ANDB And memory with accumulator.
ANDCC And memory with condition code

register.
ASLA, ASLB,
ASL

Arithmetic shift left accumulator or
memory.

ASRA, ASRB,
ASR

Arithmetic shift right accumulator or
memory.

BITA, BITB Bit test memory with accumulator.
CLRA, CLRB,
CLR

Clear accumulator or memory.

CMPA, CMPB Compare memory with accumulator.
COMA, COMB,
COM

Complement accumulator or
memory.

DAA Decimal adjust A accumulator.
DECA, DECB,
DEC

Decrement accumulator or memory.

EORA, EORB Exclusive or memory with
accumulator.

EXG R1, R2 Exchange R1 with R2.
INCA, INCB, INC Increment accumulator or memory.

LDA, LDB Load accumulator from memory.
LSLA, LSLB,
LSL

Logical shift left accumulator or
memory.

LSRA, LSRB,
LSR

Logical shift right accumulator or
memory.

MUL Unsigned multiply (8 bit by 8 bit =
16 bits).

NEGA, NEGB,
NEG

Negate accumulator or memory.

ORA, ORB Or memory with accumulator.
ORCC Or immediate with condition code

register.
PSHS (reg)8

0 Push register(s) on hardware stack.
PSHU (reg)8

0 Push register(s) on user stack.
PULS (reg)8

0 Pull register(s) on hardware stack.
PULU (reg)8

0 Pull register(s) on user stack.
ROLA, ROLB,
ROL

Rotate accumulator or memory left.

Photo 5: First silicon engineering analysis. Logic and circuit design
engineer Bob Thompson tracks down a weak node in the first batch of
6801 chips. The 6801 die is packaged, but not sealed, so that internal
nodes may be probed while in operation. Viewing through a microscope,
a probe can be placed at critical points equivalent to the layout plot.
The chip itself is running a modifies EXORcisor system, and the scope
actually displayed an internal signal with excessively slow rise time.

RORA, RORB,
ROR

Rotate accumulator or memory
right.

SBCA, SBCB Subtract memory from accumulator
with barrow.

STA, STB Store accumulator to memory.
SUBA, SUBB Subtract memory from accumulator.
TSTA, TSTB,
TST

Test accumulator or memory.

TFR R1, R2 Transfer register R1 to register R2.

16 BIT OPERATIONS
Mnemonic Description
ADD Add to D accumulator.
SUBD Subtract from D accumulator.
LDD Load D accumulator.
STD Store D accumulator.
CMPD Compare D accumulator.
LDX, LDY, LDS,
LDU

Load pointer register.

STX, STY, STS,
STU

Store pointer register.

CMPX, CMPY,
CMPU, CMPS

Compare pointer register.

LEAX, LEAY,
LEAS, LEAU

Load effective address into pointer
register.

SEX Sign extend.
TFR register,
register

Transfer register to register.

EXG register,
register

Exchange register to register.

PSHS (reg)8
0 Push register(s) on hardware stack.

PSHU (reg)8
0 Push register(s) on user stack.

PULS (reg)8
0 Pull register(s) on hardware stack.

PULU (reg)8
0 Pull register(s) on user stack.

INDEXED ADDRESSING MODES
Mnemonic Description
0,R Indexed with zero offset
[0,R] Indexed with zero offset indirect
,R+ Autoincrement by 1.
,R++ Autoincrement by 2
[,R++] Autoincrement by 2 indirect
,-R Autodecrement by 1
,--R Autodecrement by 2
[,--R] Autodecrement by 2 indirect
n,P Indexed with signed n as offset

(n=5, 8, or 16 bits)
[n,P] Indexed with signed n as offset

indirect
A,R Indexed with accumulator A as

offset
[A,R] Indexed with accumulator A as

offset indirect
B,R Indexed with accumulator B as

offset

[B,R] Indexed with accumulator B as
offset indirect

D,R Indexed with accumulator D as
offset

[D,R] Indexed with accumulator D as
offset indirect

Note: R=X, Y, U, or S; P = PC, X, Y, U, or S. Brackets
indicate indirection. D means use AB accumulator pair.

6809 RELATIVE SHORT AND LONG BRANCHES.
Mnemonic Description
BCC, LBCC Branch if carry clear.
BCS, LBCS Branch if carry clear.
BEQ, LBEQ Branch if equal.
BGE, LBGE Branch if greater than or equal

(signed).
BGT, LBGT Branch if greater (signed).
BHI, LBHI Branch if higher (unsigned).
BHS, LBHS Branch if higher or same (unsigned).
BLE, LBLE Branch if less than or equal

(signed).
BLO, LBLO Branch if lower (unsigned).
BLS, LBLS Branch if lower or same (unsigned).
BLT, LBLT Branch if less than (signed).
BMI, LBMI Branch if minus.
BNE, LBNE Branch if not equal.
BPL, BPL Branch if plus.
BRA, LBRA Branch always.
BRN, LBRN Branch never.
BSR, LBSR Branch to subroutine.
BVC, LBVC Branch if overflow clear.
BVS, LBVS Branch if overflow set.

6809 MISCELLANEOUS INSTRUCTIONS
Mnemonic Description
CWAI Clear condition code register bits

and wait for interrupt.
NOP No operation.
JMP Jump.
JSR Jump to subroutine.
RTI Return from interrupt.
RTS Return from subroutine.
SEX Sign extend B register into A

register.
SWI, SWI2 SWI3 Software interrupt.
SYNC Synchronize with interrupt line.

A Microprocessor for the Revolution: The 6809
Part 3: Final Thoughts

Terry Ritter and Joel Boney Motorola Inc.
3501 Ed Bluestein Blvd.
Austin, TX 78721

Clock Speed

In part 3 we conclude our discussion of the
Motorola 6809 processor with some thoughts on clock
speed, timing signals, condition codes and software
design philosophy for the 6809.

We expect that our logic and circuit design
cohorts will be able to get significant production at a
2 MHz bus rate (and possibly faster) with the 6809.
But this value alone means next to nothing as a figure
of processor merit (we did consider using a very high
frequency on chip oscillator so we could win the clock
rate race, but decided at the last minute that a resonant
cavity would not be acceptable to most users).

Other processors use an internal state machine
to implement the required internal operations. These
processors frequently require multiple states and
multiple clock edges to implement operations which
are done in one cycle on 6800 class processors.

The 6800 class machines are all random logic
machines with multiple dynamic sequencers. This
method of microprocessor design selects a different
set of engineering trade-offs as opposed to the state
machine approach. In particular, less critical timing
is necessary, but suspending the processor for a long
time is difficult. We provide two external methods
of stopping the machine: DMAREQ (which has a
maximum asynchronous latency of 1.5 bus cycles,
and which will recover the bus from DMA (direct
memory access) periodically to allow the dynamic
microprocessor to perform a refresh cycle) and HALT
(which has a maximum latency of 21 cycles, but
releases this bus completely).

Signals

The 6809 processor will be made in two
versions: the on chip clock version (for small systems)
and the off chip clock version (with extra signal lines
for additional processor status information). This
will allow a cost effective utilization of pins for each
proposed market.

The bus timing signals are E and Q. E is the same
as on 6800 systems (previously called ϕ), a square
wave clock with a period equal to one bus cycle. Q is
the quadrature clock, and leads E by one quarter bus
cycle. Good addresses should be available from the
processor on the leading edge of Q; data is latched (by
the processor or selected memory or peripheral) on the

trailing edge of E.
Two signals are used for clock control in the

on chip clock version. DMAREQ halts the processor
internally (and puts the output lines of the processor
in the high impedance state using three state circuitry)
but allows E and Q to continue to run to provide

Photo 1: Processing. Photosensitized wafers are exposed with a particular
mask pattern using ultraviolet light. The entire environment is otherwise
ultraviolet-free.

Photo 2: Breadboard debug. The gate level TTL model of the processor
involves ten boards of 80 to 120 integrated circuits each. Many of the
required 10,000 connections will be wrong. The system must be tested to
find and correct construction and logic errors.
Crowds are not unusual; here we have Don Tietjen, Katy Miller, James
Tietjen, Steven Messinger (almost hidden), Mike Shapiro and Bill
Keshlear.

system clocks for a DMA transfer. MREADY being
low extends a memory access in increments of the
high frequency oscillator period until MREADY is
brought high. If BA=0 (the processor is running) BS=1
means that a vector fetch is occurring (IACK). This
signal can be used to develop vector-by-interrupting-
device hardware that transfers control directly into the

desired interrupt handler without polling.
Two signals are available in the off chip clock

version to assist in multiprocessor systems. The last
instruction cycle (LIC) pin is high during the last
execution cycle of any instruction, thus giving bus
arbitration a head start. BUSY is high during read
modify write, (from the read through to modify) to
indicate the memory exclusion is required. Exclusion
is required in multi-processor systems.

Condition Codes

The 6809 condition code flags are the same as
those used in the 6800 (N, Z, V, and C), and are affected
similarly by most operations. Some exceptions are
double byte operations, since the flags are always set
to represent the result of the entire operation, whether
single or double byte. (This implied by the fact
that both data length operations have the same root
mnemonics).

While very simple in concept (the condition
flags being mere by-products of arithmetic and logic
unit [ALU] operations), their use with various data
representations and the rich set of conditional branch
conditions can seem quite complex. First, we will
define the flags as follows.

N: set if and only if the most significant bit of the
result is set (this would be the 2’s complement
“sign” bit).

Z: set if and only if all bits of the result are clear (the
result is exactly 0).

V: set if and only if the operation causes a 2’s
complement overflow. Notice that the expression
(N ⊕ V) will give the correct sign, even if the
sign is not properly represented in the result.

C: set if and only if the operation causes a carry from
the most significant bit (for ADD, ADC)

or,
set if and only if the operation does not cause a carry

from the most significant bit of the arithmetic
and logic unit (for subtract-like operations –
SUB, SBC, CMP – carry flag represent a borrow)

or,
set according to rules for rotate or shifts
or,
set if and only if bit 7 of the result is set (for MUL).
• Notice that the C flag is not the simple result of the

carry in the 8 bit arithmetic and logic unit, but
depends on the type of operation performed.

• Notice also that the carry flag represents a borrow
after subtract-like operations. This was done on
the 6800, for convenience.

Next, let’s define the use of the branches. Simple
conditional branches:

Photo 3: Plotting the circuit layout. Huge precision plotters display the
computer data base which will become the chip. The layout plot is then
checked by circuit engineers both for proper interconnection and exact
transistor sizing. Any problems thus uncovered will be repaired by editing
the data base.

Photo 4: Digitizing. Computer aided design (CAD) technician Lisa F.
enters a cell layout into the data base. The cursor on the light table is
used to transfer precision measurements to the computers. An already
digitized cell is shown on the video display.

Test True False
Z=1 BEQ BNE
N=1 BMI BPL
C=1 BCS BCC
V=1 BVS BVC

Signed conditional branches:

Test True False
(N ⊕ V) ˄ Z = 1 BGT BLE
(N ⊕ V) = 1 BGE BLT
Z = 1 BEQ BNE
(N ⊕ V) ˅ Z = 1 BLE BGT
(N ⊕ V) = 1 BLT BGE

Unsigned conditional branches:

Test True False
C ˄ Z = 1 BHI BLS
C = 1 BHS BLO
Z = 1 BEQ BNE
C ˅ Z = 1 BLS BHI
C = 1 BLO BHS

Note: The unsigned branches are not, in general,
useful after INC, DEC, LD, ST, TST, CLR or COM.

And finally, the results of known conditions of
comparison are as follows.

After SUB, SBC, CMP:
If register is less than memory value (2’s
complement value) (N ⊕ V) =1.
If register is lower than memory value (unsigned
values) C=1
If register is equal to memory value (signed or
unsigned) Z=1.
Because some instruction do not (and should not)

affect carry, only the equal and not equal branch tests
(BEQ and BNE) are useful after these instructions
(INC, DEC, LD, ST, TST, CLR, COM) operate on
unsigned values. When operating on 2’s complement
values, all signed branches are correctly available.

Some Software Design Philosophy.
The design of successful software differs from

other types of engineering design in that good software
can be easily changed, but is exceedingly unforgiving.
The creation of working software involves intimate
contact with quality.

Any program, working or unworking, is a
representative of the philosophy of truth; the machine
will execute the program, good or bad.

Only applicable programs are useful, however,

and utility is where we encounter quality. Many
individuals indoctrinated into a society founded
upon truth can scarcely understand why such truthful
programs do not work, for isn’t one truth just as good
as another?

Any program that is to be fixed or changed
must be analyzed: the written code must be read and
understood. Reading is a problem – most computer
languages are very difficult to read simply because
so many options are possible from each statement.
Finding the coherent design of a program is nearly
impossible when, as it is begin read, thousands of
options exists. It is the paradox of programming that
a disciplined, restricted, structured programming
language gives programmers greater freedom to
understand their programs.

Consider the analysis of programs: any program
segment having multiple conditional branches that
cannot be separated must be analyzed for all possible
conditions of input data before we can be assured that
the program will operate correctly.

Program segments having branch paths that
cross may be impossible to analyze rigorously due to

Photo 5: Diffusion. Into the furnace goes another batch of wafers in the
process of becoming integrated circuits. Operating near 1000° C, the
quartz liner glows incandescent.

the combinatorially larger number of paths that the
program may execute. Where control structures are
always properly nested, crossed branch path cannot
occur and analysis is easier.

Programming structures which have basically
one entry point and one exit are easily detached from
the surrounding code and are easier to understand
and test. This is the fundamental tenet of structured
programming.

Every attempt should be made to code in
modules. Modules are self-contained entities (usually
subroutines) which allocate and deallocate their own
local storage. Naturally, the actual code should be
heavily commented to allow a reader to understand
what is being attempted. But one mark of a good
module is that it contains a header block which fully
describes all aspects of the inputs to the module and
results from it. This description should be so detailed
as to allow the module to be totally recoded from this
information alone. We hope that the description was
arrived at before the module was written. It is a mark
of good software design that the actual coding is but
a minor part of the project; it occurs after all modules
have been completely described. The finished modules
which are recoded at a later date must pass the original
tests.

Software in the Revolution

The microprocessor revolution is fueled by
continual technical advancement that produces
hardware with ever higher capability and ever lower
cost. Yet, it is a requirement of the revolution that
software be written to make that cheap hardware do
anything.

Most present microprocessor software is
custom software written for a specific project. Project
specific software is rarely published, partly in the
(unreasonable) hope of maintaining trade secrete
protection, and partly because finished project
software is rarely of publication quality. Commercial
software is rare for a number of reasons: there must
be a market for the (machine specific) software before
the investment in program development is made, but
the customer base may not exists until good programs
are available. It is also difficult to consider inventing
in software that can be so easily copied (stolen) and
used.

The copying problem is not new; musical
reproductions have long coexisted with the possibility
of consumer recording and reproduction for a close
circle of friends. This occasionally happens, but it is
usually too much bother to tape the music you want
(assuming that the original product is available at a
reasonable cost). Software should be distributed as a
reasonably priced physical product that is useful to a
broad consumer base.

This is an old idea, but it just hasn’t worked.
The problem is not in the idea, but in the second
generation microcomputer architecture which limit
the applicability of any particular program read
only memory. The 6809 microprocessor is designed
specifically – through the use of position independent
code, stack indexing, and indirect addressing – to
allow the creation of standard program read only
memories. This creates a market opportunity for a
brand new standard software industry. We knew this
when we included these features; you’re welcome,
entrepreneurs!

Summary

We wrote this series of articles not only to
disclose the 6809 but mainly to put down in print
the rational and reasoning behind the 6809. It would
have benefited us if the designers of the 6800 had
documented their rationale. We would also like to
think we have stimulated some interest in the personal
computing community for solutions to the software
problem and for the study of computer architecture.
The big challenge for architects in the next decade
and beyond will be to design computers that can
effectively utilize the huge number of devices –
1,000,000 transistors by 1985 – that semiconductor
technology will be able to put on one 25 mm2 piece

Photo 6: Wafer probe. Each circuit is separately checked while still on the
wafer. This equipment automatically steps to the next chip after any bad
results or when all tests are good. A production 6800 is shown.

of silicon.
No computer is designed in a vacuum, and

we would like to thank all of our customers and
the people at Motorola who gave us valuable input.
Special thanks go to the dozens of people – two many
to enumerate – who have been or are still actively
involved in the design, implementation and production
of the MC6809. Without their individual talents and
dedication to what seemed to be impossible tasks and
impossible schedules, the MC6809 could not have
been realized. ■

This document was digitized by tim
lindner and it’s permanent home is:
https://tlindner.macmess.org/?page_id=119

https://tlindner.macmess.org/?page_id=119

