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This is a story. It is a story of computers in 
general, specifically microcomputers, and of one 
particular microprocessor - with revolutionary social 
change lurking in the background. The story could 
well be imaginary, but it happens to be true. In this 
3 part series we will describer the design of what we 
feel is the best 8 bit machine so far made by human: 
the Motorola M6809.

Philosophy

A new day is breaking; after a long slow 
twilight of design the sun is beginning to rise on 
the microprocessor revolution. For the first time we 
have mass production computers; expensive custom, 
cottage industry designs take on less importance.

Microprocessors are real computers. The 
first and second generation devices are not very 
sophisticated as processors go, but the are general 
purpose logic machines. Any microprocessor can 
eventually be made to solve the same problems as any 
large scale computer, although this may be an easier 
or harder task depending on the microprocessor. 
(Naturally, some jobs require doing processing fast, in 
real time. We are not discussing those right now. We 
are discussing getting a big job done sometime.) What 
differentiates the classes is a hierarchy of technology, 
size performance, and curiously, philosophy of use.

A processor of given capability has a fixed 
general complexity in terms of digital logic elements. 
Consider the computers that were built using the first 
solid state technology. In short they consisted of many 
thousands of individual transistors and other parts 
on hundreds of different printed circuit boards using 
thousands of connections and miles of connecting 
wire. A big computer was a big project and a very big 
expense. This simple economic fact fossilized a whole 
generation of technology into the “big computer 
philosophy.”

Because the big computer was so expensive, 
time on the computer was regarded as a limited and 
therefore valuable resource. Certainly the time was 
valuable to researchers who could now look more 
deeply into their equations than ever before. Computer 
time was valuable to business people who became at 
least marginally capable of analyzing the performance 
of an unwieldy bureaucratic organization. And the 

computer makers clearly thought that processor time 
was valuable too; or was a severely limited resource, 
worth as much as the market would bear.

Processor time was a limited resource. But 
some of us, a few small groups of technologists, are 
about to change that situation. And we hope we will 
also change how people look at computers, and how 
professionals see them too. Computer time should be 
cheap; people time is 70 years and counting down.

The large computer, being a very expensive 
resource, quickly justified the capital required to 
investigate optimum use of that resource. Among the 
principal results of these projects was the development 
of batch mode multiprocessing. The computer itself 
would save up the various tasks it had to do, then 
change from one to the other at computer speeds. This 
minimized the wasted time between jobs and spawned 
the concept of an operating system.

People were in the position of waiting for the 
computer, not because they were less important than 
the machine, but precisely because it was a limited 

Photo 1: Systems architects Ritter (right) and Boney review some of the 
6809 design documents. This work results in a complete description of 
the desired part in a 200 page design specification. The specification is 
then used by logic designers to develop flowcharts of internal operations 
on a cycle by cycle basis.



resource (the problems it solved were not).
Electronics know-how continued to develop, 

producing second generation solid state technology: 
families of digital logic integrated circuits replaces 
discrete transistors designs. This new technology was 
exploited in two main thrusts: big computers could 
be made conceptually bigger (or faster, or better) 
for the same expense, or computers could be made 
physically smaller and less expensive. These new, 
smaller computers (minicomputers) filled market 
segments which could afford a sizable but not huge 
investment in both equipment and expertise. But 
most people, including scientists and engineers, still 
used only the very large central machines. Rarely 
were minicomputers placed in schools; few computer 
science or electrical engineering departments (who 
might have been at the leading edge of new generation 
technology) used them for general instruction.

And so the semiconductor technologists began 

a third generation technology: the ability to build a 
complete computer on a single chip of silicon. The 
question then became, “How do we use this new 
technology (to make money)?”

The semiconductor producer’s problem with 
third generation technology was that an unbelievably 
large development expense was (and is) required to 
produce just one large scale integration (LSI) chip. The 
best road to profit was unclear; for a while, customer 
interconnection of gate array integrated circuits was 
tried, then dropped. Complete custom designs were 
(and are) found to be profitable only in vary large 
volumes.

Another road to profit was to produce a few 
programmable large scale integration devices which 
could satisfy the market needs (in terms of large 
quantities of different systems) and the factory’s needs 
(in terms of volume production of exactly the dame 
device). Naturally, the general-purpose computer was 
seen as a possible answer.

So what was the market for a general-purpose 
computer? The first thought was to enter the old 
second generation markets; ie.: replacement of the 
complex logic of small or medium scale integration. 
Control systems, instruments and special designs 
could all use a similar processor, but this designer 
was the key. Designers (or design managers)had to be 
converted from their heavy first and second generation 
logic design backgrounds to the new third generation 
technology. In so doing, some early marketing 
strategists overlooked the principal microprocessor 
markets.

Photo 2: 6809 logic design. Design engineer Wayne Harrington inspects a portion of the 6809’s processor logic blueprint at the 
Motorola Austin plant. The print is colored by systems engineers to partition the logic for the logic-equivalent TTL “breadboard.”

About the Authors 
Joel Boney and Terry Ritter are with the Motorola 6800 
Microprocessor Design Group in Austin TX. Joel is responsible for 
the software inputs into the design of the 6800 family processors and 
peripheral parts and was a co-architect of the M6809. Terry Ritter is 
a micro- component architect, responsible for the specification of the 
6809 advanced microprocessor. While with Motorola, Terry has been 
co- Architect of the 6809, and co-architect as well of the 6847 and 
68047 video display generator integrated circuits. He holds a BSES 
from the University of Texas as Austin and Joel Boney has a BSE 
from the University of South Florida.



Random logic replacement was by no means a 
quick and sufficient market for microprocessors. In 
particular, the design cycle was quite long, users we 
often unsophisticated in their use of computers, and 
the unit volumes was somewhat small. Only when 
microprocessors entered high volume markets (hobby, 
games, etc) did the manufactures begin to make 
money and thus provide a credible reason (and funds) 
for designing future microprocessors. Naturally, the 
users who wanted more features were surprised that it 
was taking so long to get new designs they knew what 
was needed.

Thus semiconductor makers began to realize that 
their market was more oriented to hobby applications 
that to logic replacement, and was more generalized 
than they had thought. But even the hobby market was 
saturable.

Meanwhile companies continued to improve 
production and reduce costs, and competition drove 
process down into the ground. Where could they sell 
enough computers for real volume production, the 
wondered. One answer was the personal computer!

Design of Large Scale Integration Parts

The design of a complex large scale integration 
(LSI) part may be conveniently broken into thee 
phases: the architectural design, the logic and 
the layout software and hardware (breadboard) 
simulations. Each phase ha its own requirements.

The architect/systems designers represent the 
use of the device, the need of the marketplace and the 
future needs of all customers. They propose what a 
specific customer should have that could also be used 
by other customers, possible in different ways. They 
advocate what the customers will really want, even 
when if no customers can be identified who know that 
they will want it. that it is possible or that they will 
want it. The attitude that “I know what is best for you” 
and be irritating to most people, but it is necessary in 
order to make maximum use of a limited resource (in 
this case, a single LSI design). The architect eventually 
generates the design specification used in subsequent 
phases of the design.

Logic design consists of the production of a 
cycle by cycle flowchart and the derivation of the 
equations and logic circuitry necessary to implement 
the specified design. This is a job of immense 
complexity and detail, but it is absolutely crucial to the 
entire project. Throughout this phase, the specification 
may be iterated toward a local optimum of maximum 
features at minimum logic (and thus cost). The 
architectural design continues, and techniques are 
developed to crosscheck on the logical correctness of 
the architecture.

The third phase is the most hectic in terms of 

demands and involvement. By this time, many people 
know what the product is and see the resulting part 
merely as the turning of an implementation “crank.” It 
seems to those who are not involved in this phase that 
more effort could case that crank to turn faster. Since 
the product could be sold immediately, delay is seen 
as a real loss of income. In actual practice, more effort 
will sometimes “break the crank.”

A medium scale integration logic implementation 
(usually transistor-transistor logic, for speed) is 
required to verify the logic design. A processor 
emulation may require ten different boards of 80 
medium scale integrated circuits each and hundreds 
of board to board interconnections. Each board will 
likely require separate testing, and only then will the 
emulation represent the processor to come. Extensive 
test programs are required to check out each facet of 
the part, each instruction, and each addressing mode. 
This testing may detect logic design errors that will 
have to be fixed at all levels of design.

Circuit design, in the context of the semiconductor 
industry, depends upon running computer simulation 
(which require sophisticated device models) of signals 
at various nodes to verify that they will meet the 
necessary speed requirement. Transistors are sized 
and polysilicon lines changed to provide reliable 
worst case operation.

Layout is the actual task of arranging transistors 
and interconnections to implement the logic diagram. 
Circuit design results will indicate appropriate 
transistor sizes and polysilicon widths; these must 
now be arranged for minimum area. Every attempt 

Photo 3: 6809 emulator board. Software and systems engineers implement 
a functional equivalent of the 6809 as a 6800 program. A 6800 to 6809 
cross assembler allows 6809 programs to be assembled and then executed 
as a check of the architectural design.

The other major device 
needed for home 
computers – the video 
display generator color TV 
interface – is presently in 
volume production. Several 
versions are available, many 
derived from the original 
Motorola architecture



is made to make general logic “cells” which can be 
used in many places across the integrated circuit, but 
minimization is the principal concern.

The layout for the chip eventually exists only 
as a computer data base. Each cell is individually 
digitized into the computer, where is can be arbitrarily 
positioned, modified or replicated as desired. Large 
2 by 3 m (6.5 by 10 feet) plots of various areas of 
the chip are hand checked to the logic diagram by 
layout and circuit designers as final checks of the 
implemented circuit.

When layout is complete, the computer data 
base that represents the chip design is sent to the mask 
shop (the mask is a photographic stencil of the part 
used in the manufacturing process). At the mask shop 
precision plotting and photographic step and repeat 
techniques are used to produce glass plates for each 
mask layer. Each mask covers an entire wafer with 
etched nickel or chrome layouts at real chip size. (A 
typical LSI device will be between 5 by5 and 7.6 
by 7.4mm (0.2 by 0.2 and 0.3 by 0.3 inches). These 
masks are used to expose photosensitive etch resist the 
will protect some areas of the wafer from the chemical 
processes which selectively add the impurities that 
create transistors.

Actual processing steps are quite similar for 
each part. But the processing itself is a variable, and 
it will not be known until final testing exactly how 

many parts will turn out 
to be saleable. Therefore, 
a best estimate is taken, 
and the required numbers 
of wafers (of a particular 
device) is started and 

processed. The whole industry revolves around highly 
trained production engineers, chemists and others who 
process wafers to highly secret recipes. Some recipes 
work, some don’t. You find out which ones do by 
testing.

Each die (ie.: individual large scale integration 
circuit) is tested while still on the wafer; failing devices 
are marked with a blob of ink. The wafer is sawed 
into individual dies and the good devices placed into a 
plastic or ceramic package base. The connection pads 
are “die bonded” to the exposed internal lead frame 
with very tiny wire. The package is then sealed and 
tested again.

Testing a device having only 40 pins but which 
has up to 40,000 internal transistors is no mean 
trick nor a minor expense. Furthermore, the device 
must execute all operations properly at the worst 
case system conditions (which may be high or low 
extremes of temperature, voltage and loading) and 
work with other devices on a common bus. Thus, the 
device is not specified to its own maximum operating 
speed, but rather the speed of a worst case system. 
Motorola microprocessors can usually be made to run 
much faster (and much slower) than their guaranteed 
worst case specifications.

Project Goals

The 6809 project started life with a number of 
(mostly unformalized) goals. The principle public 
goal was to upgrade the 6800 processor to be definitely 
superior to the 8 bit competition. (The Motorola 
68000 project will address the 16 bit market with what 
we believe will be another superior processor.) Many 

Photo 4: Circuit design. Detailed computer 
simulations of the circuit under design yield 
predictions of on chip waveforms. Tulley 
Peters and Bryant Wilder decide to enhance 
a particular critical transistor.



people, including many customers, felt that all that 
had to be done was to add another index register (Y), 
a few supporting instructions (LDY, STY) and correct 
some of the past omissions (PSHX, PULX, PSHU,m 
PULY). Since this would mean a rather complete 
redesign anyway, it made little sense to stop there.

A more philosophical goal — thus one much less 
useful in discussions with engineers and managers 
(who had their own opinions of what the project 
should be) — was to minimize software cost. This led 
to an extensive, and thus hard to explain sequence of 
logic that went somewhat like this:

Q: How do we reduce software costs?
A: 1. Write code is a block structured high level 

language.
2. Distribute the code in mass production read 

only memories.
Q: Why aren’t many read only memories being 

used now?
A: 1. The great opportunities for error in 

assemble language allow many mistakes which incur 
sever read only memory costs.

 2. The present architecture is not suitable for 
read only memories.

Q: In what way are the second generation 
processors unsuitable?

A: It is very difficult to use a read only memory 
in any other context than that for which it was 
originally developed. It is hard to use the same read 
only memory on systems built by different vendors. 
Simply having different input and output (IO) or using 
a different memory location is usually enough to make 
the read only product useless.

Q: What is needed?
A: 1. Position independent code.

 2. Temporary variables on the stack.
 3. Indirect operations through the stack for 

input and output.
 4. Absolute indirect operation for system 

branch tables.
And so it went. How could we make a device 

that would answer the software problems of two 
generations of processors? How indeed!

Design Decisions

Usually an engineering project may be pursued 
in many ways, but only one way at a time. The ever 
present hope is that this one time will be the only time 
necessary. Furthermore, it would be nice to get the 
project over with as soon as possible to get on with 
selling some products. (A rapid return on investment 
is especially important in a time of rapid inflation.) 
To these honorable ends certain decisions are made 

which delineate the investment and risk undertaken in 
an attempt to achieve a new product.

The 6809 project was no exception. To minimize 
project risk it was decided that the 6809 would be 
built on the same technological base as the recently 
completed 6800 depletion load redesign. In particular, 
the machine would be a random logic computer with 
essentially dynamic internal operation. It would use 
the reliable 6800 type of storage register. Functions 
would be compatible with the defined 6800 bus and 
6800 peripherals. This decision would extend the 
like of parts already in production and minimize 
testing peripheral devices for a particular processor 
(6800 versus 6809). Buss compatibility doesn’t 
have to mean identity — the new device could have 
considerably improved specifications but could not do 
worse than the specifications for the existing device. 
This mandate was a little tricky when you consider 
that we were dealing with a more complex device 
using exactly the same technology, but there was a 
slight edge: the advancing very large scale integration 
(VLSI) learning curve.

One wide range decision was that the new device 
would be an improved 6800 part. The widely known 
6800 architecture would be iterated and improved, but 
no radical departure would be considered. In fact, the 
new devise should be code compatible with the 6800 
at some level.

Compatibility was the basis for the 6809 
architecture design. It implied that the 6809 could 
capitalize on the existing familiarity with the 6800. 

Photo 5: Checking the flowcharts. Logic and circuit designer Bryant Wilder 
compares the specification to one of the flowcharts. The flowcharts are 
used to develop Boolean equations for the required logic; those equations 
are then used to generate a logic diagram.



6800 programmers could be programming for the 
6809 almost immediately and could learn and use new 
addressing mode and features as they were needed. 
This decision also ended any consideration of radically 
new architecture for the machine before it was begun.

A corporation selling into a given market is 
necessarily limited to moderate innovation. Any 
vast product change requires reeducation of both the 
internal marketing organization and the customer 
base before mass sales can proceed. Consequently, 
designers have to restrict their creativity to conform 
to the market desires. The amount of change actually 
implemented, produced and seen by society is the 
true meaning of a computer “generation.” In the end, 
society itself defines the limits of a new generation, 
and a design years ahead of its time may well fail in 
the marketplace.

M6800 Data Analysis

Once the initial philosophical and marketing 

trade-offs were made, construction of the final form 
of the M6809 began. By this time a large numbers of 
M6800 programs had been written by both Motorola 
and our customers, so it was felt that a good place to 
start design of the 6809 was to analyze large amounts 
of existing 6800 source code. Surprisingly, the 
data gathered about 6800 usage of instructions and 
addressing modes agreed substantially with similar 
data previously compiled for minicomputers and maxi 
computers. By far the most common instructions were 
load and stores, which accounted for over 38 percent 
of all 6800 instructions. Next were the subroutine 
calls (Direct, Extended, Immediate, Indexed, Relative, 
Accumulator) had nearly equal usage, which indicated 
that programmers actually took advantage of the 
bytes to be saved by direct (page zero) addressing 
and indexed addressing. Furthermore the offsets for 
indexed instructions were either 0 or less than 32 (see 
table 2).

This information was used to greatly expand 
the addressing modes (as discussed later) with out 
making the 6800 programs require more code when 
converted to run on the 6809. Also the number of 
increment or decrement index register instructions 
in loops indicated that auto incrementing and auto 
decrementing would be beneficial.

Auto decrementing and auto incrementing are 
similar to indexing except the index register used 
is decremented before, or decremented after, the 
addressing operation takes place.

As all programmers and even architects like 
ourselves eventually learn, consistent and uniform 
instruction sets are used more effectively than 
instruction sets that treat similar resource (IO, registers 
or data) in dissimilar ways. For example, the least used 
instructions on the 6800 were those that dealt with the 
A accumulator in specific ways that did not apply to the 
B accumulator (eg.: ABA: add B to A, CBA: compare 
B to A). It’s not that these instructions are not useful, 
it’s just that programmers will not use inconsistent 
instructions or addressing modes. Consistency became 
the battle cry of the M6809 designers!

Customer Inputs

At the completion of the 6800 analysis stage, 
the first preliminary design specification for the 6809 
was generated. This preliminary specification was 
then taken to about 30 customers who represented a 
cross section of current 6800 users, as well as some 
customers and consultants known to be hostile to the 
6800. With these customers visits we hoped to resolve 
two major questions about the 6809’s architecture:

1) Which architecture was more desirable 8 bit 
or 16 bit?

Instruction Class Percent Usage
Loads 23.4
Stores 15.3
Subroutine calls and returns 13.0
Conditional branches 11.0
Unconditional branches and jumps 6.5
Compares and tests 6.2
Increments and decrements 6.1
Clear 4.4
Adds and subtracts 2.8
All others 11.3

Table 1: 6800 instruction types based on static analysis of 25,000 
lines of 6800 source code. In static analysis the actual number of 
occurrences of each instruction is tallied from program listings. In 
the alternate technique, called dynamic analysis, the numbers of 
occurrences of an instruction is tallied while the program is running. 
An instruction inside a program loop would therefore be counted 
more than once.

Index Offset Percent Usage
0 40.0

1–31 53.0
32–63 1.0

64-255 6.0

Table 2: Size of offsets used in 6800 indexed addressing, based on 
static analysis of 25,000 lines of 6800 source code.



2) Did 6809 compatibility with the 6800 need to 
occur at the object level or at the source level.

Most customers felt that an 8 bit architecture was 
adequate for their upcoming applications, and they did 
not want to pay the price penalty for 16 bit as long as 
the 6809 included the most common 16 bit operations 
such as add, subtract, load, store, compare and 
multiply. Many were interested though, in Motorola’s 
advanced 16 bit processor (68000) for future 16 bit 
applications. From the very inception of the6809 
project it was a requirement that the 6809 would be 
compatible with the 6800. Weather this compatibility 
needed to occur at the object level or at the assembly 
language (source code) level was a question we felt 
our customers should help us answer. Virtually every 
customer indicated that source compatibility was 
sufficient because they would not try to use 6800 
read only memories in 6809 systems. Most customers 
indicated that they would take advantage of the 6800 
compatibility in order to initially convert running 
6800 programs into running 6809 programs, and then 
modify the 6800 code to take advantage of the 6809’s 
features.

The decision not to be object code compatible 
was an easy one for us since it meant that we could 
remap the 6800 op codes in a manner guaranteed to 
produce more byte efficient and faster 6809 programs. 
The remapping of op codes was greatly affected by 
the 6800 data analysis. Some low occurrence 6800 
instruction were combined into consistent 2 byte 
instructions, allowing the more useful instruction to 
take fewer bytes and execute faster. Also, some 6800 
instructions were eliminated completely in favor of 2 
instruction sequences. These sequences are generated 
automatically by our assembler when the 6800 
mnemonic is recognized. This remapping in favor of 
more often used functions results in 6809 programs 
that require only one half to two thirds as much 
memory as 6800 programs, and run faster.

M6809 Registers

What, then, are the pertinent features that 
make the 6809 a next generation processor? In the 
following paragraphs we will attempt to highlight the 
improvements made to the 6800. The programming 
model for the 6809 (figure 1) consists of four 8 bit 
registers and five 16 bit registers.

The A and B accumulators are the same as those 
of the 6800 except that they can also be concatenated 
into the A:B pair, called the D register, for 16 bit 
operations.

The condition codes are similar to the 6800, with 
the inclusion of two new bits. The F bit is the interrupt 
mask bit for the new fast interrupt. The fast interrupt 

(FIRQ) only stacks the program counter and condition 
code register when an interrupt occurs. The interrupt 
routine is then responsible for stacking any registers 
it uses. The E bit is set when the registers are stacked 
during interrupts if the entire register set was saved (as 
in nonmaskable and maskable interrupts) or cleared if 
the short register set was saved (for a fast interrupt).

On the 6800, an instruction with direct mode 
(or page zero) addressing consisted of an op code 
followed by an 8 bit value that defined the lower eight 
bits of an address, The upper eight bits were always 
assumed to be zero. Thus, direct addressing could only 
address locations in the lowest 256 bytes of memory. 
The 6809 adds versatility to this addressing mode by 
defining an 8 bit direct page register that defines the 
upper eight bits of address for all direct addressing 
instructions. This allows direct mode addressing to 
be used throughout the entire address space of the 
machine. To maintain 6800 compatibility, the direct 
page register is set to 0 on reset.

Four 16 bit indexable register are included in 
the 6809. They are the X, Y, U and S registers. The X 
register is the familiar 6800 index register, and the S 
register is the hardware stack pointer. The Y register 
is a second index register; the U register is the user 
stack pointer. All four registers can be used in all 

X INDEX REGISTER

POINTER REGISTERS

Y INDEX REGISTER

U USER STACK POINTER

S HARDWARE STACK POINTER

PC PROGRAM COUNTER

A B

D

ACCUMULATORS

DP DIRECT PAGE REGISTER

CC–CONDITION CODE REGISTER

OVERFLOW
CARRY–BORROW

ZERO
NEGATIVE
INTERRUPT REQUEST MASK
HALF CARRY
FAST INTERRUPT REQUEST MASK
ENTIRE STATE ON STACK

E F H I N Z V C

Figure 1: 6809 programming model.



indexing operations and the U and S resisters are also 
stack pointers, The S register is used during interrupts 
and subroutine calls by the hardware to stack return 
addresses and machine states.

Addressing Modes

It was out opinion that the best way to improve an 
existing architecture and maintain source compatibility 
was to add powerful addressing modes. In out view, 
the 6809 has the most powerful addressing modes 
available on any microprocessor. Powerful addressing 
modes helped us achieve out goals of position 
independence, reentrancy, recursion, consistency and 
easy implementation of block structured high level 
languages.

All the 6800 addressing modes (immediate, 
Extended, Direct, Indexed, Accumulator, Relative, 
and inherent) are supported on the 6809 with the direct 
mode of addressing made more useful by the inclusion 
of the direct page register (DPR).

The direct page register usage and direct 
addressing need some explanation, since they can be 
very effective when used correctly. For example, since 
global variables are referenced frequently in high level 
language execution, the direct page register can be 
used to point to a page containing the global variables 
while the stack contains the local variables, which are 
also referenced frequently. This creates very efficient 

code which is safe since the compiler keeps track of 
the direct page register. The direct page register can 
also be used effectively and safely in a multitasking 
environment where the real time operating system 
allocates a different base page register for each task.

On the other hand, it would be quite dangerous 
to indiscriminately reallocate the direct page register 
frequently, such as within subroutines or loops, since 
it might become very easy to lose track of the current 
direct page register value. Therefore, even though 
the direct page register is unstructured, we included 
it because, when used correctly, the byte savings are 
significant. Also, to make direct addressing more 
useful, the read modify write instruction on the 6809 
now have all memory addressing modes: Direct, 
Extended and Indexed.

The major improvements in the 6809’s 
addressing mode were made by greatly expanding 
the indexed addressing modes as well as making all 
indexable instructions applicable to the X, Y, U and S 
registers (see table 3).

Indexed addressing with an offset is familiar 
to 6800 users, but the 6809 allows the offset to be 
any of four possible lengths: 0, 5, 8 or 16 bits, and 
the offsets are signed two’s complements values. 
This allows greater flexibility in addressing while 
achieving maximum byte efficiency. The inclusion of 
the 16 bit offset allows the role of index register and 
offset to be reversed if desired. A further enhancement 
allows all of the above modes to include an additional 
level of indirection. Even extended addressing can be 
indirected (as a special indexed addressing mode). 
Since either stack pointer can be specified as a base 
address in indexed addressing, the indirect mode 
allows addresses of data to be passed to a subroutine. 

Type

Constant
offset from R

Accumulator
offset from R

Autoincrement/
–decrement R

Constant offset
from program
counter

Extended use nonindexed

Forms

no offset
 5 bit offset
 8 bit offset
 16 bit offset

A register offset
B register offset
D register offset

increment by 1
increment by 2
decrement by 1
decrement by 2

 8 bit offset
 16 bit offset

Source

,R
n,R
n,R
n,R

A,R
B,R
D,R

,R+
,R++
,-R
,--R

n,PCR
n,PCR

Post Byte

Nonindirect

1RR00100
0RRnnnnn
1RR01000
1RR01001

1RR00110
1RR00101
1RR01011

1R000000
1RR00001
1RR00010
1RR00011

1XX01100
1XX01101

+
~

0
1
1
4

1
1
4

2
3
2
3

1
5

+ 
#

0
0
1
2

0
0
0

0
0
0
0

1
2

Source

[,R]

[n,R]
[n,R]

[A,R]
[B,R]
[D,R]

[,R++]

[,--R]

[n,PCR]
[n,PCR]

[n]

Post Byte

Indirect

1RR10100
defaults to 8-bit

1RR11000
1RR11001

1RR10110
1RR10101
1RR11011

not allowed
1RR10001
not allowed
1RR10011

1XX11100
1XX11101

10011111

+
~

3

4
7

4
4
7

6

6

4
8

5

+ 
#

0

1
2

0
0
0

0

0

1
2

2

Table 3: Indexed addressing modes. All instructions with indexed 
addressing have a base size and number of cycles. The +/~ and +/# 
columns indicate the number of additional cycles and bytes for the 
particular variation. The post byte op code is the byte that immediately 
follows the normal op code.



The subroutine can then reference the data pointed 
to with one instruction. This increases the efficiency 
of high level language calls that pass arguments by 
reference.

M6800 data indicated that quite often the index 
register was being used in a loop and incremented 
or decremented each time. This moved the pointer 
though tables or was used to move data from one 
area of memory to another (block moves). Therefore, 
we implemented auto-increment and auto decrement 
indexed addressing in the M6809. In auto-increment 
mode the value pointed to by the index register is used 

as the effective address, and then the index register is 
increment-ed. Auto decrement is similar except that 
the index register is first decremented and then used 
to obtain the effective address. Listing 1 is an example 
of a subroutine that searches a text; buffer for the 
occurrence of an input string. It makes heavy use of 
auto incrementing.

Since the 6809 supports 8 and 16 bit operations, 
the size of the increment or decrement can be selected 
by the programmer to be 1 or 2. The post increment, 
predecrement nature of the addressing mode makes it 
equivalent in operation to a push and pull from a stack. 

00001                              NAM    AUTOEX
00003                              OPT    LLEN=80
00004                              *
00005                              ************************************************************
00006                              *   COMPARE STRINGS SUB
00007                              *  
00008                              *   FIND AN INPUT ASCII STRING POINTED TO BY THE
00009                              *   X-REGISTER IN A TEXT BUFFER POINTED TO BY THE
00010                              *   Y-REGISTER. THE BUFFER IS TERMINATED BY A
00011                              *   BYTE CONTAINING A NEGATIVE VALUE. ON ENTRY
00012                              *   A CONTAINS THE LENGTH OF THE INPUT STRING. ON
00013                              *   EXIT Y CONTAINS THE POINTER TO THE START
00014                              *   OF THE MATCHED STRING + 1 IFF Z IS SET. IFF Z
00015                              *   IS NOT SER THE INPUT STRING WAS NOT FOUND
00016                              *  
00017                              *   ENTRY:
00018                              *     X POINTS TO INPUT STRING
00019                              *     Y POINTS TO TEXT BUFFER
00020                              *     A LENGTH OF INPUT STRING
00021                              *   EXIT:
00022                              *     IFF Z=1 THEN Y POINTS TO MATCHED STRING + 1
00023                              *     IFF Z = 0 THE NO MATCH
00024                              *     X IS DESTROYED
00025                              *     B IS DESTROYED
00026                              *
00027                              ************************************************************
00028                              *
00029  0100            6           ORG       $100
00030  0100  E6  A0    6 CMPSTR    LDB       ,Y+       GET BUFFER CHARACTER
00031  0102  2A  01    3           BPL       CMP1      BRANCH IS NOT AT BUFFER END
00032  0104  39        5           RTS                 NO MATCH, Z=0
00033  0105  E1  84    4 CMP1      CMPB      ,X        COMPARE TO FIRST STRING CHAR.
00034  0107  26  F7    3           BNE       CMPSTR    BRANCH ON NO COMPARE
00035                    *SAVE STATE SO SEARCH CAN BE RESUMED IF IT FAILS
00036  0109  34  32    9           PSHS      A,X,Y
00037  010B  30  01    5           LEAX      1,X       POINT X TO NEXT CHAR
00038  010D  4A        2 CMP2      DECA                ALL CHARS COMPARE?
00039  010E  27  0C    3           BEQ       CMPOUT    IF SO, IT’S A MATCH, Z=1
00040  0110  E6  A0    6           LDB       ,Y+       GET NEXT BUFFER CHAR
00041  0112  2B  08    3           BMI       CMPOUT    BRANCH IS BUFFER END, Z=0
00042  0114  E1  80    6           CMPB      ,X+       DOES IT MATCH STRING CHAR?
00043  0116  27  F5    3           BEQ       CMP2      BRANCH IF SO
00044  0118  35  32    9           PULS      A,X,Y     SEARCH FAILED, RESTART SEARCH
00045  011A  20  E4    3           BRA       CMPSTR
00046  011C  35  B2   11 CMPOUT    PULS      A,X,Y,PC  FIX STACK, RETURN WITH Z
00047                    *
00048        0000        END

Listing 1: 6809 autoincrementing example. This subroutine searches a text buffer for the occurrence of an input string. 
In autoincrement mode, the value pointed to by the index register is used as the effective address and the index register 
is then incremented.



This allows the X and Y registers to also be used as 
software stack pointers if the programmer needs more 
than two stacks. All indexed addressing modes can 
also contain an extra level of post indirection. Auto 
increment and auto decrement are more versatile than 
the block moves and string commands available on 
other processors.

Quite often the programmer needs to calculate 
the offset used by an indexed instruction during 
program execution, so we included an index mode that 
allows the A, B, or D accumulator to be used as an 
offset to any indexable register. For example, consider 
fetching a 16 bit value from a two dimensional array 
called CAT with dimensions: CAT (100,30). Listing 2 
shows the 6809 code to accomplish this fetch. These 
addressing modes can also be indirected.

Implementation of position independent code 
was one the highest priority design goals. The 6800 
had limited position independent code capabilities for 
small programs, but we felt the 6809 must make this 
type of code so easy to write that most programmers 
would make all their programs position independent. 
To do this a additional long relative (16 bit offset) 
branch mode was added to all 6800 branches as well 
as adding program relative addressing. Program 
relative addressing uses the program counter much 
as indexing uses on of the indexable registers. This 
allows all instructions that reference memory to 
reference data relative to the current program counter 
(which is inherently position independent). Of course, 
program relative addressing can be indirected.

The addressing modes of the 6809 have created 
a processor that has been termed a “programmer’s 
dream machine.” To date all the benchmarks we 
have written for the 6809 are position independent, 

modular, reentrant and much smaller than comparable 
programs on other microprocessors. It is easier to 
write good programs on the 6809 than bad ones!

New or Innovative Instructions

The 6809 does not contain dozens of new 
innovative instructions, and we planned it that 
way. What we wanted to do was clean up the 6800 
instruction set and make it more consistent and 
versatile. We do not feel a processor with 500 different 
assembler mnemonics for instructions is better than on 
with 59 powerful instructions that operate on different 
data in the manner, for example, the 6809 contains 
a transfer instruction of the form TFR R1, R2 that 
allows transfer of any like sized registers. There are 
42 such valid combinations on the 6809, and clearly 
one TFR instruction is easier to remember than 42 
mnemonics o the form: TAB, TBA, TAP, TXY, etc. 
Also an exchange instruction (EXG) exists that has 
identical syntax to the TFR instruction and has 21 
valid forms. In the time it took to read three sentences 
you just learned 63 new 6809 instructions! As another 
example, we combined the instructions that set and 
cleared condition code bits on the 6800 into two 6809 
instructions that AND or OR immediate data into the 
condition code register.

Other significant new instructions include 
the new 16 bit operations, The D register can be 
loaded, stored, added to subtracted from, compared, 
transferred, exchanged, pushed and pulled. All the 
indexable registers (16 bits) and be loaded, stored and 
compared. The load effective address instruction can 
also be used to perform 8 or 16 bit arithmetic on the 
indexable registers as described later.

Two significant new instructions are the multiple 
push and multiple instructions on the 6809. With 
one 2 byte instruction any register or set of registers 
can be pushed or pulled from wither stack. These 
instructions greatly decrease the overhead associated 
with subroutine calls in both assembly and high level 
language programs. In conjunction with instructions 
using auto-increment and auto decrement, the 6809 
can efficiently emulate a stack computer architecture, 
which means it should e efficient for Pascal p-code 
interpreters and the like.

The orders in which the registers are pushed 

00010  0100                  ORG     $100
00011  0100  108E  1000   4  LDY     #CAT   LOAD BASE ADDRESS OF ARRAY
00012  0104  96    32     4  LDA     SUB1   GET FIRST SUBSCRIPT
00013  0106  C6    64     2  LDB     #100   MULTIPLY BY FIRST DIMENSION
00014  0108  3D          11  MUL
00015  0109  D3    33     6  ADDD    SUB2   ADD SECOND SUBSCRIPT
00016  010B  EC    AB     9  LDD     D,Y    FETCH VALUE

Listing 2: Array subscript calculations. This 6809 program fetches a 16 bit value from a two dimensional array called CAT, with 
dimensions: CAT (100,30).

Advertisment

for

C&K Components, Inc.
15 Riverdale Avenue, Newton, MA 02158



or pulled from the stacked is given in figure 2. Note 
that not all registers need to be pushed or pulled, but 
that the order is retained if a subset is pushed. This 
stacking order is also identical to the order used by all 
hardware and software interrupts.

One new instruction in the 6809 is a sleeper. The 
load effective address to indexable register (LEA) 
instruction calculates the effective address from the 
indexed addressing mode and deposits that address in an 
indexable register, rather than loading the data pointed 
to by the effective address as in a normal load. This 
instruction was originally created because we wanted 
a way to let the addressing mode hardware already 
present in the processor calculate the address of a data 
object so that it could be passed to a subroutine. After 
the index addressing modes were completed it was 
realized the LEA instruction had many more uses, and 
once again, allowed us to combine other instructions 
into one powerful instruction. For example to add the 
D accumulator to the Y index register, the instruction 
is: LEAY D, Y; to add 500 to the U register: LEAU 
500, U; and to add 5 to the value is the S register and 
transfer the sum to the U register: LEAU 5, S.

In writing position independent read only memory 
programs it is sometimes necessary to reference data 
in a table within the same read only memory. This is 
generally a tedious process even in computers that 
claim to support position independent code because 
the register that points to the table must eventually 
contain an absolute address. The LEA instruction, in 
conjunction with program counter relative addressing, 
makes this possible with one instruction on the 6809. 
For example, to put the address of a table DG located 
in a relative read only memory into indexable register 
U: LEAU DG, PCR; or to find out where a position 
independent read only memory is located: LEAY *, 
PCR (or TFR PC, Y). Our benchmarks show the LEA 
instruction to be the most used new 6809 instruction 
by far.

An unsigned 8 bit by 8 bit to 16 bit multiply was 
provided for the 6809. The A accumulator contains 
one argument and the B the other. The result is put 
back onto the A:B (D) accumulator. A multiply was 
added because multiplied are used for calculating 
array subscripts, interpolating values and shifting, as 
well as for more conventional arithmetic calculations. 
An unsigned multiply was selected because it can be 
used to form multi-precision multiplies.

Another facet of good programming practice 
that we wanted to encourage was the use of operating 
system calls or software interrupts (SWI). The 6800 
SWI has been effectively used by 6800 support 
software for breakpoints and disk operating system 
calls. That’s nice, but unfortunately there was only 
one software interrupt, and since Motorola’s software 
used that one the customer found it difficult to share. 

The 6809 provides three software interrupts, one of 
which Motorola promises never to use. It is available 
for user systems.

One new instruction on the 6809, SYNC, allows 
external hardware to be synchronized to the software 
by using one of their interrupt lines. Using this 
instruction, very tight, fast instruction sequences can 
be created when it is necessary to process data from 
very fast input and output devices. Listing 4 gives 
an example of the use of SYNC. It is assumed that 
the A side of the peripheral interface adapter (PIA) is 
connected to a high speed device that transfers 128 
bytes of data to a memory buffer. When the device 
is ready to send a piece of data, it generates a fast 
interrupt (FIRQ) from the A side of the peripheral 
interface adapter. Program lines 12 and 13 set up the 
transfer; lines 16 through 20 are the synchronization 
loop. On each pass through the loop, the program 
waits at the SYNC instruction until any interrupt 
line is pulled low. When the interrupt line goes low, 
the processor executed the next instruction. In order 
to use SYNC, all other devices tied to any of the 
interrupt line must be disabled. For this example it 
was assumed that the B side of the peripheral interface 
adapter also had interrupts enabled; program lines 9 
though 11 disable the interrupts and line 21 through 
23 reenable it. Line 14 is included to keep the interrupt 
by the A side of the peripheral interface adapter from 
going to the interrupt routine. Note that interrupts do 
not need to be enabled for SYNC to work, and in fact 

6809 STACKING ORDER
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Figure 2: 6809 push/pull and interrupt stacking order.



are normally disabled.
Another improvement to the instruction set 

was brought about by the inclusion of the hardware 
signal BUSY. BUSY is high during read/modify/write 
types of instructions to indicate to shared memory 
multiprocessors that and indivisible operation is in 
progress. As shown in figure 3 this fact can be used 
to turn existing instructions into the LOCK and 
UNLOCK necessary for mutual exclusion of critical 
sections of the program, or for allocation of resources.

And lastly, never let it be said the 6809 has 
no SEX appeal—sign extend, that is. The SEX 
instruction takes an 8 bit two’s complement value in 
the B accumulator and converts it to a 16 bit two’s 
complements value in the D accumulator by extending 
the most significant bit (sign bit) of B into A.

Table 4 is a convenient way to look to look a all 
the instructions available on the 6809. The notation 
first page/second page/third page op codes have the 
following meaning: first page op codes have only one 
byte of op code. For example: load A immediate has an 
op code of hexadecimal 68. All second page op code 
are preceded by a page op code of 10. For example, 
the op code for CMPD immediate is hexadecimal 

1083 (two bytes). Similarly third page op codes are 
preceded by a hexadecimal 11. A CMPU immediate 
is 1183. Some instructions are given two mnemonics 
as a programmer convenience. For example, ASL and 
LSL are equivalent. Notice that the long branch op 
codes LBRA and LBSR were brought onto the first 
page for increased code efficiency.

Stacks
As mentioned previously, the 6809 has many 

features that support stack usage. Most modern block 
structured high level languages make extensive use of 
stacks. Even though stacks are useful in the typical 
textbook example of expression evaluation, their major 
usage in languages such as Pascal is to implement 
control structures. Microprocessor users already 
realize the advantage of a stack in nesting interrupts 
and subroutine calls. Most high level languages also 
pass data on the stack and allocate temporary local 
variables from the stack.

Listing 4 and figure 4 show an example of a 
high level language subroutine linkage. Before calling 
the subroutine the caller pushed and addresses of 
two arguments and the answer on the stack and then 
executed the jump to subroutine which puts the return 
program counter on the stack. The subroutine then 
saves the old stack mark pointer on the stack as well 
as reserving space on the stack for the local variables 
for the subroutine. In this example, size locations are 
used but the subroutine body during calculation. At 
this point the stack mark pointer is set to a new value 
for this subroutine. The stack mark pointer is used 
because the S register may very during execution of 
the subroutine body due to local subroutines, etc. It 
is much more convenient for the compiler to generate 
offsets to the parameters is the U is used for this 
purpose instead of the S.

Once U is set it is used to fetch the two arguments 
using indexed indirect addressing. The sub-routine 

00008  0100  ORG $100
00009  0100  B6  F002  5         LDA      PIABC    LOAD PIA CONTROL REG. - SIDE B
00010  0103  84  F7    2         ANDA     #$F7     TURN OFF B-SIDE INTERRUPTS
00011  0105  B7  F002  5         STA      PIABC
00012  0108  8E  3000  3         LDX      #BUFFER  GET POINTER TO BUFFER
00013  010B  C6  80    2         LDB      #128     GET SIZE OF TRANSFER
00014  010D  1A  50    3         ORCC     #$50     DISABLE INTERRUPTS
00015                     * WAIT FOR ANY INTERRUPT LINE TO GO LOW
00016  010F  13        2  LOOP   SYNC              SYNCHRONIZE WITH I/O
00017  0110  B6  F000  5         LDA      PIAAD    LOAD A-SIDE DATA; CLEAR INTERRUPT
00018  0113  A7  80    6         STA      ,X+      STORE IN BUFFER
00019  0115  5A        2         DECB              DONE?
00020  0116  26  F7    3         BNE      LOOP     BRANCH IS NOT
00021  0118  B6  F002  5         LDA      PIABC    TURN B-SIDE INTERRUPTS BACK ON
00022  011B  8A  08    2         ORA      #$08
00023  011D  B7  F002  5         STA      PIABC

Listing 3: Hardware synchronization using SYNC, a new instruction in the 6809 processor that allows external hardware to be 
synchronized to the software by using one of the interrupt lines. Very fast instruction sequences can be created using SYNC when it is 
necessary to process data from very fast input and output devices.

Figure 3: The ASR (arithmetic shift right) instruction is used as a “test and 
clear” and ST (store) is used for “unbusy.” These primitive operations are 
used for implementing critical section exclusion on the 6809.
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body presumable does something with the arguments 
and finishes with an answer in the D register. The 
subroutine exit saved this value. It then puts the return 
address in X and restores the previous stack mark 
pointer. The whole stack is then cleaned up (deleted) 
and return is made to the caller.

Motorola 6800 users should note that the stack 
pointers on the 6809 point to the last value pushed on 
the stack rather than the next free location, as on the 
6800. This was done so that auto-increment and auto 
decrement would be equivalent to pulls and pushes. 
For example: STA ,-S is equivalent to PSHS A; and 
LDA ,S+ is equivalent to PULS S. This also means 
the X and Y registers can be used as stack pointers if 
the programmer desires. For example: STA ,-X is a 
push on a stack defined by X. The possible ambiguity 
between where the stack pointer points on the 6800 

and the 6809 may be less of a problem than it seems, 
since of 6800’s TSX becomes the 6809’s TFR S, 
X without adding 1 and TXS becomes a TFR X, S 
without subtracting 1 – think about it. The only danger 
is in programs that used the stack pointer as an index 
register. In these programs the stack pointer may point 
on location away from where it did previously.

Interrupts

The 6809 has three fully vectored hardware 
interrupts. The nonmaskable interrupt (NMI) and 
maskable interrupt (IRQ) are the same as the 6800’s 
NMI and IRQ. The new interrupt is the fast maskable 
interrupt, or FIRQ, that stacks the program counter 
and condition code register only on interrupt. Table 
5 gives the addresses of the interrupt vectors for the 

Table 4: 6809 op code map and cycle counts. The numbers by each op code indicate the number of machine cycles required to execute 
each instruction. When the number contains an I (eg: 4+I), and additional number of machine cycles equaling I may be required (see 
table 3). The presence of two numbers, with the second on in parentheses, indicate that the instruction involves a branch. The larger 
number applies if the branch is taken. The notation first page/second page/third page has the following meaning: first page op codes 
have only one bye of op code (eg: load A immediate has an op code of hexadecimal 86). All page 2 op codes are preceded by a page 
op code hexadecimal 10 (eg: the op code for CMPD immediate is hexadecimal 1083 – two bytes). Similarly third page op codes are 
preceded by a hexadecimal 11. A CMPU immediate is 1183. Some instructions are given two mnemonics as a programmer convenience 
(eg: ASL and LSL are equivalent). Notice that the long branch op codes LBRA and LBSR were brought onto the first page to increased 
code efficiency.
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6809.
A new signal (IACK) has been added that is 

available anytime an interrupt vector is fetched. This 
signal together with address bus lined A1 through A3 
can be used to implement in interrupt scheme in which 
each device supplies its own interrupt vector.

The interrupt control and prioritization 
logic of the 6809 have been defined very carefully – 
not redundant or indeterminate conditions can exist 
when several interrupts occur simultaneously. The 
details of the interrupt structure are precisely defined 
in Motorola documentation for the 6809.

Part 2, entitled “instruction Set Dead-Ends, Old 
Trails and Apologies,” will be a question and answer 
discussion about the design philosophy that went into 
the 6809. ■
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FFFF Restart
FFFC NMI
FFFA SWI
FFF8 IRQ
FFF6 FIRQ
FFF4 SWI2
FFF2 SWI3
FFF0 Reserved

Table 5: Hexadecimal addresses of the 6809 restart and interrupt 
vectors.

00006  0500  34  40      6 SUBR PSHS U       SAVE OLD STACK MARKER
00007  0502  32  66      5      LEAS 6,S     RESERVE LOCAL STORAGE
00008  0504  1F  43      6      TFR S,U      GET NEW STACK MARKER
00009  0506  EC  D8  0E 10      LDD [14,U]   GET ARGUMENT 1
00010  0509  AE  DE  0C 10      LDX [12,U]   GET ARGUMENT 2
00011  *
00012  * SUBROUTINE BODY
00013  *
00014  050C  ED  D3  0A 10      STD [10,U]   SAVE ANSWER
00015  050F  AE  48      6      LDX 8,U      GET RETURN ADDRESS
00016  0511  EE  46      6      LDU 6,U      RESTORE U’
00017  0513  32  E8  10  6      LEAS 16,S    POP EVERYTHING OFF STACK
00018  0516  6E  84      3      JMP ,X       RETURN

Listing 4: Use of stacks on the 6809 processor. In this typical high level language subroutine example, U’ and S’ are the mark stack 
pointer and the hardware stack pointer, respectively, just prior to the call. U and S are the same registers during execution of the 
subroutine body. Before calling the subroutine the caller pushes the address of two arguments and the answer on the stack and then 
executes the jump to subroutine which puts the return program counter on the stack. The subroutine then saves the old stack mark pointer 
on the stack as well as reserving space on the stack for the local variables for the subroutine (see figure 4).



A Microprocessor for the Revolution: The 6809

Part 2: Instruction Set Dead Ends, Old Trails and 
Apologies

Terry Ritter and Joel Boney Motorola, Inc.
3501 Ed Bluestein Blvd
Austin, TX 78721

In part 1 of this series (see January 1979 
BYTE, page 14) we discussed the instruction set and 
other details of the Motorola 6809 processor. Part 
2 is a question and answer discussion of the design 
philosophy that went into the 6809.

Any change from old to new inevitably brings 
criticism from someone. Indeed, any failure to 
change to include someone’s pet ideas brings its own 
criticisms. We have not been isolated from sometimes 
severe criticism, nor from its political implications.

However, a number of our decisions have been 
reasonably challenged, and here we hope to present 
illumination and defense. While we are aware of a 
number of improvements which might have been 
included, the whole point is to sell a reasonably sized 
(and thus reasonably priced) integrated circuit. We 
hope that architectural errors of commission, as they 
are found, will be seen in light of the complete design. 
We are not aware of any such errors at this time.

Point 1:

The replaced instructions (PSHA/PULA, TAB/
TBA, INX/DEX) all take more cycles and bytes than 
before. Why did you do such a thing?

Answer 1:

Consider: the question is not just PSHA/PULA, 
but rather PSHA/PULA/PSHB/PULB/PSHX/PULX/
PSHY/PULY/PSHU/PULU, etc, as well as similar 
op codes for the other stack. There are only 256 1 
byte op codes. If the PUSHs and PULLs are made 1 
byte, others must be made 2 byte, and these will take 
more cycles and bytes than before. And the macro-
sequenced PUSH or PULL instructions are more 
efficient than byte op codes when more than one 
register is involved.

Similarly, as more registers are added, the number 
of possible transfer paths become combinatorially 
larger. Do you really want to give up that number of 1 
byte op codes?

As for INX/DEX, we find that these we 
frequently used in 6800 code because they were 
more convenient than any other alternatives. We 
now offer auto incrementing and auto decrementing 
indexing as a viable (ie.: shorter, in cycles and bytes) 
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alternative. We also allow arbitrary additions to X, Y, 
U, and S.

Point 2:

I don’t see any facility for expanding the 64K 
address space.

Answer 2:

True. Memory expansion is possible, but 
consider this: microprocessors are products of a mass 
production technology processor cost is no longer a 
system limiting factor. It is generally inappropriate to 
use a single $20 processor to control $10,000 worth 
of memory; the single processor could use only a 
fraction of the bandwidth resource available in that 
much memory (here, bandwidth means the maximum 
possible rate of change of storage state under processor 
control). A far more reasonable approach is to place the 
same total store on ten processors and give yourself 
the possibility of major throughput improvement. 
Naturally you’ll have to learn how to control all this 
power, but if you’re an innovative systems designer, 
that’s exactly your job.

There are two principal divisions of 
multiprocessor systems, depending on the degree of 
coupling between the processors. Closely coupled 
processors usually communicate through some 
common memory; loosely coupled processors 

communicate through input/output ports, serial lines, 
or other “slow” communications channels. Loosely 
coupled systems can usually be understood as 
networks of quasi-independent processors.

Now, let’s consider a concept that we call “smart 
memory.” One reason for wanting more address space 
on a processor is to randomly access a large store of on 
line data. Most of your processing is spent cataloging 
data, sorting data, moving, searching and updating 
data. If you want to handle more data, you put on more 
memory and the system gets bigger and slower.

But suppose you put a processor on each 
reasonable piece of memory (16K or whatever). 
Make the program for that processor really dumb - 
make it just take orders for data. Its whole purpose is 
to handle data for the command processor; it stores, 
moved, searches and updates. But for now, it does 
only memory operations. Now hook a lot of these 
“smart memory” modules onto your system (the IEEE 
488 bus should work), and command a search. All the 
modules search in parallel, and if you grow and put 
more modules, you handle more data just as fast as 
ever! The second major approach to multiprocessor 
systems is what we call shared bus multiprocessing. 
Multiple microprocessors are closely coupled through 
a common bus and a proper subset of their memory 
address space. It is crucial to see the common bus 
as the bandwidth limiting resource; each processor 
should use its own local memory and stay off the 
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common bus until it needs access to the common store.
Multiple requests for common memory access 

might be issued by various processors at exactly the 
same moment. It is there fore necessary to arbitrate 
among them, switching exactly one processor onto 
the common bus, and allowing it to proceed with its 
memory access while the other are held not-READY.

It should be clear that the same concept (a 
common bus arbitration and switching node) can 
be hierarchically extended. Further, the addressing 
capability can be expanded and possibly remapped at 
each node to allow fast random access to huge amounts 
of on line mass storage. Such obvious extension is left 
as an exercise for the serious student. Perhaps you are 
thinking that you can build it, but nobody can write 
the software to control it. We are not insensitive to the 
problem, just unhappy with the attitude. We worked 
hard to give you the tool; all you have to do is learn to 
use it. Every new technology is like this - our scientists 
still don’t know how to fully control the atom, but that 
doesn’t stop atomic fusion from being one of the most 
attractive “games” around since the payoffs are huge.

Nobody has a chance to develop complex 
multiprocessor software until she or he has a real 
multiprocessor system. Now for $500 and a little 
work, you’ve got the hardware. It’s time to start 
learning to control these systems. If it’s hard one way, 
do it another. The power is there for use.

Point 3:

You still didn’t include block operations, did 
you?

Answer 3:

No - and we could have. But have you looked 
at how often block instructions could really be used 
in your programs? And how much code is needed to 
duplicate them yourself? And how often they don’t 
really do exactly what you wanted? And how fast they 
would run compared to your programmed version? 
Please do look. We think the auto-increment and auto-
decrement index addressing is a far more general 
solution. 

Point 4:

No bit manipulation, either. 

Answer 4:

Are you really willing to pay 10 to 20 percent 
more just for bit manipulation? Program coded bit 
manipulation takes a little longer, but is more general, 
and probably is located is a very lightly used portion 

of your program, thus having very little effect on your 
total throughput or program size.

Point 5:

Why no undefined op code trap? 

Answer 5:

Because the machine is a random logic 
implementation. The unused op codes are used as 
‘don’t cares’ in derivation of internal logic equations, 
thus allowing reduced logic and integrated circuit size. 
Failure to include the don’t cares in the logic equations 
would result is a larger and more expensive circuit.

Point 6:

Some other processors allow both indexed before 
indirect (indexed indirect) operation and indirect 
before indexed (indirect indexed) operation, but yours 
does not. Why?

Answer 6:

First of all, we wanted our addressing modes to 
operate on all of our memory instructions. Secondly, 
indirect indexed addressing has much lower utility 
than our indexed indirect form. Thirdly, we didn’t 
strip down our instruction set, so real features were 
getting a little precious. Everything has to fit on one 
chip, remember.

We had considered the possibility of including 
a sort of chained addressing, in which the memory 
data would be interpreted as a new indexed postbyte 
capable of specifying a complete new addressing 
operation. This sort of thing could continue to 
indefinite levels, of course. But such an instruction 
would then be executing data, which is usually a 
bad idea (self-modifying code) and is also the reason 
why we included no EXEcute instruction. (Naturally, 
EXEcute can be emulated if you really need it. but 
since EXEcute is usually used to make up for the 
lack of powerful addressing modes, it will not likely 
be missed from the 6809) Furthermore, this executed 
data would almost certainly be discontinuous in the 
memory space, making even the analysis of the simple 
case (read only memory) programs extremely difficult. 
Placing such an uncontrollable gimmick in a processor 
design would be like placing a glittering knife in front 
of a baby, and would be similarly irresponsible.

Point 7:

You have a MULtiply, but no DIVide.



Answer 7:

True enough. Multiply operations are required in 
high level language subscript array calculations, but 
how often do you really need divide? Do you really 
want to pay for something you will rarely use and can 
do easily with a program. Additionally, the unsigned 
multiply is easily capable of extension into multiple 
precision arithmetic. (Try that with a singed multiply!) 
Divide does not decompose as nicely. This combined 
with the absence of similar instructions in the machine 
(divide needs 24 bits of parameters, both in and out) 
was enough to leave it out.

Point 8:

Your registers are all special purpose.

Answer 8:

Well, in a way, as we have 16 bits of accumulator 
and 64 bits of usable pointers plus some others. This 
basic dichotomy of data and pointers to data exists 

in practice, and is therefore rarely a problem with 
out implementation. But the EXG instruction allows 
convenient manipulation between these groups in any 
unusual circumstances.

Point 9:

Why did you include all those new addressing 
modes? I’ll never use them.

Answer 9:

We expect that you will use the new addressing 
modes, and quite heavily. There are a lot of different 
indexed options. But notice that the large number of 
different modes is a result of including all permutations 
of a few basic ideas.

Fundamentally, you can index from any pointer 
register (x 4), use indexed indirect access (x 2), and 
have accumulator offsets (x 3) or constant offsets of 
up to 16 bits in three versions (x 3) (see box at lower 
right). But if you work in assembly language, you don’t 
need to figure addressing so the different constant 
offsets modes may be ignored. And if you select an 
addressing mode which is not available, the assembler 
will politely inform you of your indiscretion.

Alternately, you can specify auto-increment or 
auto-decrement operations (x 2), by either one or two 
(x 2), which may be indirected (x 1.5) (except there is 
no indexed auto-increment and auto-decrement by one 
indirect - think about it). Finally, constant offsets are 
allowed from the program counter (x 3) and these may 
also be indirected (x 2).

There are a lot of modes, no doubt about it. 
But relatively few new ideas are required to gain full 
control over those powerful new features.

Point 10:

I would have liked an operating system call 
instruction which carried a parameter to the operating 
system.

Answer 10:

So would we. Unfortunately, the location I want 
to use for parameters may not (and probably will not) 
be what you want to use. It is desirable to allow both 
constant and variable parameters to the operating 
system. What you do get is two more trap-like 
software interrupt (SWI) instructions; the instructions 
SWI2 and SWI3 do not mask interrupt as SWI does, 
thus allowing use even in interrupt derived programs. 
Parameters may be passed in any register, or on the 
stack, or as the next byte of in line code. All of this 
will require some overhead, but the scheme is for 
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more general than a trap that carries a parameter.

Point 11:

Tell me again about the stack pointers: why two 
stack pointers?

Answer 11:

Good point. The original reason for adding 
the user stack pointer was to facilitate the creation 
of a data stack in memory that is separate from 
the program stack. This avoids one of the serious 
problems of using a second generation processor 
in a modular programming environment - that of 
returning parameters to a calling routine. We want 
to pass parameters in a position independent manner, 
of course, but the return from subroutine (RTS) 
instruction uses the top element of the stack as a return 
address, and this address is placed on the stack before 
the subroutine is entered. On the 6800 there will be 
a lot of stack rearrangement going on to get around 
this problem. The user stack pointer was created as 
a new stack unencumbered with return addresses (or 
interrupt state information) to allow data to be passed 
between routines of different levels in a reasonable 
manner. And since the new stack works exactly like 
the old, there is a relatively small silicon cost involved.

We do suspect, however, that many programmers 
will elect to accept the overhead involved with 
passing parameters on the hardware stack (note that 
the overhead problem is greatly reduced with the 
6809). These programmers will be concerned with 
the access of parameters placed on the stack by higher 
level routines. Notice that, as more elements are added 
to the stack, these same parameters are referred to 
by varying offsets with respect to the stack pointer 
itself: this is bad, since it becomes difficult to analyze 
exactly which value is being accessed by any given 
subroutine. Thus many programmers will use the U 
register as a stack mark pointer, fixed at some previous 
location of the stack pointer. All lower level modules 
will then be able to refer to the same data by identical 
offsets from the U register.

Point 12:

Why do the 6809 stack pointers point to the last 
item on the stack rather than the next free location, as 
on the 6800?

Answer 12:

This architectural change was virtually mandated 
by the following the chain of logic that resulted from 
extending the 6800 into double byte, auto-increment 

and stack indexable operations.
First, let us assume the above extensions with 

a 6800 style stack: the stack pointer thus points 
one byte below (lower in memory) the last byte 
deposited. Naturally the other pointers should work 
similarly (allowing their use as additional stacks, and 
requiring no new understanding). This means that the 
auto-index operations have to be preincrement and 
postdecrement. Now, suppose we have a stack or table 
of double byte data; the data pointer must be set up 
one byte below the data to prepare for auto-increment 
(or pull) operations. To access the first value the 
expression LDD ,+S must be used, while succeeding 
operations appear to need LDD ,++S. This result is 
not great for loops. Alternately, the stack pointer 
could be made to point two bytes above the stack for 
double byte data only. This would require different 
offsets from the stack pointer (to access, say, the top 
of the stack) depending upon the size of the data being 
accessed. Different offsets would also be required, 
depending on whether the data was just being used, 
or being pulled from the stack. This is workable, but 
not great conceptually. Another possibility is to form 
the effective address from the value of the pointer 
after only the first increment. This “kludge” solution 
would be hard to implement anyway, so we changed 
the stacks.

This change of reasoning is an example of the 
difference between architectural design and just 
slapping instructions together.

Point 13:

Why not have more registers? 

Answer 13:

Good designs are often the result of engineering 
compromises. To meet product size goals, only so 
many things can go on an integrated circuit. You can 
have registers, or features, or some combination. The 
6809 does have approximately 20 addressing modes.

Registers for the sake of registers amount 
to little more than separate, very expensive and 
restricted memory areas. The register resource is 
always insufficient to hold temporary results of a 
large program, and must be reallocated in various 
routines. This allocation process is an error prone 
programming overhead. A separate register set for 
interrupt processing is suitable only for one interrupt 
level and, otherwise, is mostly wasted.

A few registers fully supported by features are 
better than just having a lot of registers.

Point 14:

The notation (x n) 
means there are n 
ways to perform 
that particular 
operation. (x 
1.5) means there 
are two ways 
to perform that 
operation but not 
every addressing 
mode is allowed…
RGAC



Why no instructions to load or store the direct 
page register?

Answer 14:
The direct page register is one of those possible 

dangerous features which was just too good to pass up 
(in terms of substantial benefits for minimum cost). 
The benefits include an operation length reduction of 
33 percent for instructions using absolute address and 
a concurrent throughput increase of 20 percent. It now 
becomes possible to optimize code, perhaps allowing 
an oversized program to fit within discrete read only 
memory boundaries. The direct page register may 
also be used in a multitasking environment to allow 
single copies of routines to operate with multiple 
independent processes. However, providing a separate 
stack area and having each routine store local values 
on the stack may be a better solution.

Because a number of 6809 instructions (eg: INC/
DEC, ASL/ASR/ROL/ROR/LSL, TST/ COM/CLR/
NEG) operate directly on memory, the direct page area 
may be used very much like a processor with 256 8 bit 
registers to hold counters, flags and serial information. 
So, perhaps most importantly, the direct page register 

relaxes the system requirement for programmable 
memory at a particular location (page 0) to use direct 
addressing; the cost is a single 8 bit register and no 
new instructions.

The programmer is cautioned to tread carefully 
when using direct page register. All forms of absolute 
addressing for temporary values and parameters 
present problems in the development of large programs. 
Attempts to enlarge the number of direct locations by 
manipulating the direct page register may be tricky. 
And manipulation of the register by subroutines may 
lead to errors which switch the calling routines direct 
page in remote (ie.: subroutine) unobvious code. 
Therefore, this register is made deliberately difficult to 
play with. Typically, it should be set up once and left 
there. To load the direct page register you can proceed 
as follows: EXG A,DP; LDA #NEWDP; EXG A,DP. 
Alternately, the direct page register is also available in 
PUSH/PULL instructions, but misuse is discouraged 
through lack of LDDP and STDP.

Point 15:

You preach consistency, yet you give us LEA, an 
instruction with different condition codes for different 
registers. Why is this so?

Answer 15:

The Z flag is unaffected by LEAS or LEAU but 

conditionally set by LEAX or LEAY depending on 
the value loaded into the register. This provides 6800 
compatibility with INX/DEX (implemented as LEAX 
1,S or LEAX -1,X) and INS/DES (implemented as 
LEAS 1,S and LEAS - 1,S), respectively.

Now clearly, if most 6800 programs are going to 
run on the 6809, the use of INX/DEX for event counts 
must be recognized. But in 6809 programs, releasing 
local stack area before executing RTS will b a very 
frequent action (LEAS -9,S; RTS) “cleaning up the 
stack.” You do want to return a previous condition 
code value undamaged by the LEAS, so you get two 
types of LEA.

Point 16:
What about position independent code? Doesn’t 

the 6800 allow it, too?
Answer 16:
Position independent code is one crucial factor 

in achieving low cost software. (Position independent 
temporary storage and input/output must also be 
available.) Only read only memories which may be 
used in arbitrary target systems are economically 
viable in the context of mass production. And only 

these read only memories can result in low cost 
firmware for us all.

The 6800 is capable of position independent code 
execution in relatively small programs. Somewhere 
around a 4 K byte limit the program can no longer 
support all control-transfer paths using branch branch 
instructions (even allowing the use of intermediate 
branch “islands”). Either a long branch subroutine 
must be used (at a cost of 100+ cycles for each LBSR) 
or the program must be made position dependent.

Point 17:

What about dynamic memory? 

Answer 17:

There are two problems associated with dynamic 
memories: address bus multiplexing and refresh. 
Address bus multiplexing is the most severe problem 
but requires multiplexing 6+6 address lines (for 
4 K memories) or 7 + 7 lines (for 16K memories); 
these values are particularly inconvenient for 8 bit 
processors (which usually multiplex address/data). 
Thus, we have yet to see a processor address this 
problem. Microprocessors that automatically refresh

memory during most unused bus cycles waste 
power on unnecessary refreshes and unnecessarily 
increase bus activity. The 6809 can easily refresh 
dynamic memory in software (a timer cause interrupt 

Photo 4: Editing the layout. Drafting manager Wayne Busfield and senior layout designer Rick Secrist make changes indicated 
by engineering analysis. This iterative process improves performance and production yield, and thus lowers cost.



execution of FCB $1063 times, then RTI), or can 
support hardware refresh (a direct memory access 
[DMA] sequence, or isolatec board automatic refresh) 
at minimal cost.

Point 18:

What about price? 

Answer 18:

The 6809 will be more expensive than in 
production second generation 8 bit designs. For one 
thing, it is bigger and also new - both reasons imply 
reduced yield compared to older parts. A moderately 
higher price should not be a problem, since the 
processor cost is a very minor part of the price of 
a whole system. The total 6809 system should be 
nearly as powerful and much less expensive than 16 
bit designs. The cost of not using 6809, on the other 
hand, will likely be severe in terms of increased 
programming error rates, larger read only memories 
and decreased throughput.

In “Part 3: Final Thoughts” (March 1979 BYTE), 
we will conclude this series with a discussion of clock 
speed, timing, condition codes and software deign 
philosophy. ■

Table 1: 6809 instruction set.

8 BIT OPERATIONS
Mnemonic Description
ABX Add B register to X register 

unsigned.
ADCA, ADCB Add memory to accumulator with 

carry.
ANDA, ANDB And memory with accumulator.
ANDCC And memory with condition code 

register.
ASLA, ASLB, 
ASL

Arithmetic shift left accumulator or 
memory.

ASRA, ASRB, 
ASR

Arithmetic shift right accumulator or 
memory.

BITA, BITB Bit test memory with accumulator.
CLRA, CLRB, 
CLR

Clear accumulator or memory.

CMPA, CMPB Compare memory with accumulator.
COMA, COMB, 
COM

Complement accumulator or 
memory.

DAA Decimal adjust A accumulator.
DECA, DECB, 
DEC

Decrement accumulator or memory.

EORA, EORB Exclusive or memory with 
accumulator.

EXG R1, R2 Exchange R1 with R2.
INCA, INCB, INC Increment accumulator or memory.

LDA, LDB Load accumulator from memory.
LSLA, LSLB, 
LSL

Logical shift left accumulator or 
memory.

LSRA, LSRB, 
LSR

Logical shift right accumulator or 
memory.

MUL Unsigned multiply (8 bit by 8 bit = 
16 bits).

NEGA, NEGB, 
NEG

Negate accumulator or memory.

ORA, ORB Or memory with accumulator.
ORCC Or immediate with condition code 

register.
PSHS (reg)8

0 Push register(s) on hardware stack.
PSHU (reg)8

0 Push register(s) on user stack.
PULS (reg)8

0 Pull register(s) on hardware stack.
PULU (reg)8

0 Pull register(s) on user stack.
ROLA, ROLB, 
ROL

Rotate accumulator or memory left.

Photo 5: First silicon engineering analysis. Logic and circuit design 
engineer Bob Thompson tracks down a weak node in the first batch of 
6801 chips. The 6801 die is packaged, but not sealed, so that internal 
nodes may be probed while in operation. Viewing through a microscope, 
a probe can be placed at critical points equivalent to the layout plot. 
The chip itself is running a modifies EXORcisor system, and the scope 
actually displayed an internal signal with excessively slow rise time.



RORA, RORB, 
ROR

Rotate accumulator or memory 
right.

SBCA, SBCB Subtract memory from accumulator 
with barrow.

STA, STB Store accumulator to memory.
SUBA, SUBB Subtract memory from accumulator.
TSTA, TSTB, 
TST

Test accumulator or memory.

TFR R1, R2 Transfer register R1 to register R2.

16 BIT OPERATIONS
Mnemonic Description
ADD Add to D accumulator.
SUBD Subtract from D accumulator.
LDD Load D accumulator.
STD Store D accumulator.
CMPD Compare D accumulator.
LDX, LDY, LDS, 
LDU

Load pointer register.

STX, STY, STS, 
STU

Store pointer register.

CMPX, CMPY, 
CMPU, CMPS

Compare pointer register.

LEAX, LEAY, 
LEAS, LEAU

Load effective address into pointer 
register.

SEX Sign extend.
TFR register, 
register

Transfer register to register.

EXG register, 
register

Exchange register to register.

PSHS (reg)8
0 Push register(s) on hardware stack.

PSHU (reg)8
0 Push register(s) on user stack.

PULS (reg)8
0 Pull register(s) on hardware stack.

PULU (reg)8
0 Pull register(s) on user stack.

INDEXED ADDRESSING MODES
Mnemonic Description
0,R Indexed with zero offset
[0,R] Indexed with zero offset indirect
,R+ Autoincrement by 1.
,R++ Autoincrement by 2
[,R++] Autoincrement by 2 indirect
,-R Autodecrement by 1
,--R Autodecrement by 2
[,--R] Autodecrement by 2 indirect
n,P Indexed with signed n as offset 

(n=5, 8, or 16 bits)
[n,P] Indexed with signed n as offset 

indirect
A,R Indexed with accumulator A as 

offset
[A,R] Indexed with accumulator A as 

offset indirect
B,R Indexed with accumulator B as 

offset

[B,R] Indexed with accumulator B as 
offset indirect

D,R Indexed with accumulator D as 
offset

[D,R] Indexed with accumulator D as 
offset indirect

Note: R=X, Y, U, or S; P = PC, X, Y, U, or S. Brackets 
indicate indirection. D means use AB accumulator pair.

6809 RELATIVE SHORT AND LONG BRANCHES.
Mnemonic Description
BCC, LBCC Branch if carry clear.
BCS, LBCS Branch if carry clear.
BEQ, LBEQ Branch if equal.
BGE, LBGE Branch if greater than or equal 

(signed).
BGT, LBGT Branch if greater (signed).
BHI, LBHI Branch if higher (unsigned).
BHS, LBHS Branch if higher or same (unsigned).
BLE, LBLE Branch if less than or equal 

(signed).
BLO, LBLO Branch if lower (unsigned).
BLS, LBLS Branch if lower or same (unsigned).
BLT, LBLT Branch if less than (signed).
BMI, LBMI Branch if minus.
BNE, LBNE Branch if not equal.
BPL, BPL Branch if plus.
BRA, LBRA Branch always.
BRN, LBRN Branch never.
BSR, LBSR Branch to subroutine.
BVC, LBVC Branch if overflow clear.
BVS, LBVS Branch if overflow set.

6809 MISCELLANEOUS INSTRUCTIONS
Mnemonic Description
CWAI Clear condition code register bits 

and wait for interrupt.
NOP No operation.
JMP Jump.
JSR Jump to subroutine.
RTI Return from interrupt.
RTS Return from subroutine.
SEX Sign extend B register into A 

register.
SWI, SWI2 SWI3 Software interrupt.
SYNC Synchronize with interrupt line.



A Microprocessor for the Revolution: The 6809 
Part 3: Final Thoughts

Terry Ritter and Joel Boney Motorola Inc.
3501 Ed Bluestein Blvd. 
Austin, TX 78721

Clock Speed

In part 3 we conclude our discussion of the 
Motorola 6809 processor with some thoughts on clock 
speed, timing signals, condition codes and software 
design philosophy for the 6809.

We expect that our logic and circuit design 
cohorts will be able to get significant production at a 
2 MHz bus rate (and possibly faster) with the 6809. 
But this value alone means next to nothing as a figure 
of processor merit (we did consider using a very high 
frequency on chip oscillator so we could win the clock 
rate race, but decided at the last minute that a resonant 
cavity would not be acceptable to most users).

Other processors use an internal state machine 
to implement the required internal operations. These 
processors frequently require multiple states and 
multiple clock edges to implement operations which 
are done in one cycle on 6800 class processors.

The 6800 class machines are all random logic 
machines with multiple dynamic sequencers. This 
method of microprocessor design selects a different 
set of engineering trade-offs as opposed to the state 
machine approach. In particular, less critical timing 
is necessary, but suspending the processor for a long 
time is difficult. We provide two external methods 
of stopping the machine: DMAREQ (which has a 
maximum asynchronous latency of 1.5 bus cycles, 
and which will recover the bus from DMA (direct 
memory access) periodically to allow the dynamic 
microprocessor to perform a refresh cycle) and HALT 
(which has a maximum latency of 21 cycles, but 
releases this bus completely).

Signals

The 6809 processor will be made in two 
versions: the on chip clock version (for small systems) 
and the off chip clock version (with extra signal lines 
for additional processor status information). This 
will allow a cost effective utilization of pins for each 
proposed market.

The bus timing signals are E and Q. E is the same 
as on 6800 systems (previously called ϕ), a square 
wave clock with a period equal to one bus cycle. Q is 
the quadrature clock, and leads E by one quarter bus 
cycle. Good addresses should be available from the 
processor on the leading edge of Q; data is latched (by 
the processor or selected memory or peripheral) on the 

trailing edge of E.
Two signals are used for clock control in the 

on chip clock version. DMAREQ halts the processor 
internally (and puts the output lines of the processor 
in the high impedance state using three state circuitry) 
but allows E and Q to continue to run to provide 

Photo 1: Processing. Photosensitized wafers are exposed with a particular
mask pattern using ultraviolet light. The entire environment is otherwise
ultraviolet-free.

Photo 2: Breadboard debug. The gate level TTL model of the processor
involves ten boards of 80 to 120 integrated circuits each. Many of the
required 10,000 connections will be wrong. The system must be tested to 
find and correct construction and logic errors.
Crowds are not unusual; here we have Don Tietjen, Katy Miller, James
Tietjen, Steven Messinger (almost hidden), Mike Shapiro and Bill 
Keshlear.



system clocks for a DMA transfer. MREADY being 
low extends a memory access in increments of the 
high frequency oscillator period until MREADY is 
brought high. If BA=0 (the processor is running) BS=1 
means that a vector fetch is occurring (IACK). This 
signal can be used to develop vector-by-interrupting-
device hardware that transfers control directly into the 

desired interrupt handler without polling.
Two signals are available in the off chip clock 

version to assist in multiprocessor systems. The last 
instruction cycle (LIC) pin is high during the last 
execution cycle of any instruction, thus giving bus 
arbitration a head start. BUSY is high during read 
modify write, (from the read through to modify) to 
indicate the memory exclusion is required. Exclusion 
is required in multi-processor systems.

Condition Codes

The 6809 condition code flags are the same as 
those used in the 6800 (N, Z, V, and C), and are affected 
similarly by most operations. Some exceptions are 
double byte operations, since the flags are always set 
to represent the result of the entire operation, whether 
single or double byte. (This implied by the fact 
that both data length operations have the same root 
mnemonics).

While very simple in concept (the condition 
flags being mere by-products of arithmetic and logic 
unit [ALU] operations), their use with various data 
representations and the rich set of conditional branch 
conditions can seem quite complex. First, we will 
define the flags as follows.

N: set if and only if the most significant bit of the 
result is set (this would be the 2’s complement 
“sign” bit).

Z: set if and only if all bits of the result are clear (the 
result is exactly 0).

V: set if and only if the operation causes a 2’s 
complement overflow. Notice that the expression 
(N ⊕ V) will give the correct sign, even if the 
sign is not properly represented in the result.

C: set if and only if the operation causes a carry from 
the most significant bit (for ADD, ADC)

or,
set if and only if the operation does not cause a carry 

from the most significant bit of the arithmetic 
and logic unit (for subtract-like operations – 
SUB, SBC, CMP – carry flag represent a borrow)

or,
set according to rules for rotate or shifts
or,
set if and only if bit 7 of the result is set (for MUL).
• Notice that the C flag is not the simple result of the 

carry in the 8 bit arithmetic and logic unit, but 
depends on the type of operation performed.

• Notice also that the carry flag represents a borrow 
after subtract-like operations. This was done on 
the 6800, for convenience.

Next, let’s define the use of the branches. Simple 
conditional branches:

Photo 3: Plotting the circuit layout. Huge precision plotters display the 
computer data base which will become the chip. The layout plot is then 
checked by circuit engineers both for proper interconnection and exact 
transistor sizing. Any problems thus uncovered will be repaired by editing 
the data base.

Photo 4: Digitizing. Computer aided design (CAD) technician Lisa F. 
enters a cell layout into the data base. The cursor on the light table is 
used to transfer precision measurements to the computers. An already 
digitized cell is shown on the video display.



Test True False
Z=1 BEQ BNE
N=1 BMI BPL
C=1 BCS BCC
V=1 BVS BVC

Signed conditional branches:

Test True False
(N ⊕ V) ˄ Z = 1 BGT BLE
(N ⊕ V)  = 1 BGE BLT
Z = 1 BEQ BNE
(N ⊕ V) ˅ Z = 1 BLE BGT
(N ⊕ V)  = 1 BLT BGE

Unsigned conditional branches:

Test True False
C ˄ Z = 1 BHI BLS
C  = 1 BHS BLO
Z = 1 BEQ BNE
C ˅ Z = 1 BLS BHI
C  = 1 BLO BHS

Note: The unsigned branches are not, in general, 
useful after INC, DEC, LD, ST, TST, CLR or COM.

And finally, the results of known conditions of 
comparison are as follows.

After SUB, SBC, CMP:
If register is less than memory value (2’s 
complement value) (N ⊕ V) =1.
If register is lower than memory value (unsigned 
values) C=1
If register is equal to memory value (signed or 
unsigned) Z=1.
Because some instruction do not (and should not) 

affect carry, only the equal and not equal branch tests 
(BEQ and BNE) are useful after these instructions 
(INC, DEC, LD, ST, TST, CLR, COM) operate on 
unsigned values. When operating on 2’s complement 
values, all signed branches are correctly available.

Some Software Design Philosophy.
The design of successful software differs from 

other types of engineering design in that good software 
can be easily changed, but is exceedingly unforgiving. 
The creation of working software involves intimate 
contact with quality.

Any program, working or unworking, is a 
representative of the philosophy of truth; the machine 
will execute the program, good or bad.

Only applicable programs are useful, however, 

and utility is where we encounter quality. Many 
individuals indoctrinated into a society founded 
upon truth can scarcely understand why such truthful 
programs do not work, for isn’t one truth just as good 
as another?

Any program that is to be fixed or changed 
must be analyzed: the written code must be read and 
understood. Reading is a problem – most computer 
languages are very difficult to read simply because 
so many options are possible from each statement. 
Finding the coherent design of a program is nearly 
impossible when, as it is begin read, thousands of 
options exists. It is the paradox of programming that 
a disciplined, restricted, structured programming 
language gives programmers greater freedom to 
understand their programs.

Consider the analysis of programs: any program 
segment having multiple conditional branches that 
cannot be separated must be analyzed for all possible 
conditions of input data before we can be assured that 
the program will operate correctly.

Program segments having branch paths that 
cross may be impossible to analyze rigorously due to 

Photo 5: Diffusion. Into the furnace goes another batch of wafers in the
process of becoming integrated circuits. Operating near 1000° C, the
quartz liner glows incandescent.



the combinatorially larger number of paths that the 
program may execute. Where control structures are 
always properly nested, crossed branch path cannot 
occur and analysis is easier.

Programming structures which have basically 
one entry point and one exit are easily detached from 
the surrounding code and are easier to understand 
and test. This is the fundamental tenet of structured 
programming.

Every attempt should be made to code in 
modules. Modules are self-contained entities (usually 
subroutines) which allocate and deallocate their own 
local storage. Naturally, the actual code should be 
heavily commented to allow a reader to understand 
what is being attempted. But one mark of a good 
module is that it contains a header block which fully 
describes all aspects of the inputs to the module and 
results from it. This description should be so detailed 
as to allow the module to be totally recoded from this 
information alone. We hope that the description was 
arrived at before the module was written. It is a mark 
of good software design that the actual coding is but 
a minor part of the project; it occurs after all modules 
have been completely described. The finished modules 
which are recoded at a later date must pass the original 
tests.

Software in the Revolution

The microprocessor revolution is fueled by 
continual technical advancement that produces 
hardware with ever higher capability and ever lower 
cost. Yet, it is a requirement of the revolution that 
software be written to make that cheap hardware do 
anything.

Most present microprocessor software is 
custom software written for a specific project. Project 
specific software is rarely published, partly in the 
(unreasonable) hope of maintaining trade secrete 
protection, and partly because finished project 
software is rarely of publication quality. Commercial 
software is rare for a number of reasons: there must 
be a market for the (machine specific) software before 
the investment in program development is made, but 
the customer base may not exists until good programs 
are available. It is also difficult to consider inventing 
in software that can be so easily copied (stolen) and 
used.

The copying problem is not new; musical 
reproductions have long coexisted with the possibility 
of consumer recording and reproduction for a close 
circle of friends. This occasionally happens, but it is 
usually too much bother to tape the music you want 
(assuming that the original product is available at a 
reasonable cost). Software should be distributed as a 
reasonably priced physical product that is useful to a 
broad consumer base.

This is an old idea, but it just hasn’t worked. 
The problem is not in the idea, but in the second 
generation microcomputer architecture which limit 
the applicability of any particular program read 
only memory. The 6809 microprocessor is designed 
specifically – through the use of position independent 
code, stack indexing, and indirect addressing – to 
allow the creation of standard program read only 
memories. This creates a market opportunity for a 
brand new standard software industry. We knew this 
when we included these features; you’re welcome, 
entrepreneurs!

Summary

We wrote this series of articles not only to 
disclose the 6809 but mainly to put down in print 
the rational and reasoning behind the 6809. It would 
have benefited us if the designers of the 6800 had 
documented their rationale. We would also like to 
think we have stimulated some interest in the personal 
computing community for solutions to the software 
problem and for the study of computer architecture. 
The big challenge for architects in the next decade 
and beyond will be to design computers that can 
effectively utilize the huge number of devices – 
1,000,000 transistors by 1985 – that semiconductor 
technology will be able to put on one 25 mm2 piece 

Photo 6: Wafer probe. Each circuit is separately checked while still on the 
wafer. This equipment automatically steps to the next chip after any bad 
results or when all tests are good. A production 6800 is shown.



of silicon.
No computer is designed in a vacuum, and 

we would like to thank all of our customers and 
the people at Motorola who gave us valuable input. 
Special thanks go to the dozens of people – two many 
to enumerate – who have been or are still actively 
involved in the design, implementation and production 
of the MC6809. Without their individual talents and 
dedication to what seemed to be impossible tasks and 
impossible schedules, the MC6809 could not have 
been realized. ■
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